
Abstract

Title of dissertation: A FORMAL MODEL OF AMBIGUITY AND ITS

APPLICATIONS IN MACHINE TRANSLATION

Christopher Dyer, Doctor of Philosophy, 2010

Dissertation directed by: Professor Philip Resnik
Department of Linguistics and
Institute for Advanced Computer Studies

Systems that process natural language must cope with and resolve ambiguity. In

this dissertation, a model of language processing is advocated in which multiple inputs

and multiple analyses of inputs are considered concurrently and a single analysis is only a

last resort. Compared to conventional models, this approach can be understood as replac-

ing single-element inputs and outputs with weighted sets of inputs and outputs. Although

processing components must deal with sets (rather than individual elements), constraints

are imposed on the elements of these sets, and the representations from existing models

may be reused. However, to deal efficiently with large (or infinite) sets, compact rep-

resentations of sets that share structure between elements, such as weighted finite-state

transducers and synchronous context-free grammars, are necessary. These representa-

tions and algorithms for manipulating them are discussed in depth in depth.

To establish the effectiveness and tractability of the proposed processing model, it is

applied to several problems in machine translation. Starting with spoken language transla-

tion, it is shown that translating a set of transcription hypotheses yields better translations

compared to a baseline in which a single (1-best) transcription hypothesis is selected and

then translated, independent of the translation model formalism used. More subtle forms

of ambiguity that arise even in text-only translation (such as decisions conventionally

made during system development about how to preprocess text) are then discussed, and it

is shown that the ambiguity-preserving paradigm can be employed in these cases as well,

again leading to improved translation quality. A model for supervised learning that learns

from training data where sets (rather than single elements) of correct labels are provided

for each training instance and use it to learn a model of compound word segmentation is

also introduced, which is used as a preprocessing step in machine translation.

A Formal Model of Ambiguity and its Applications in Machine Translation

by

Christopher James Dyer

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Philip Resnik, Chair/Advisor
Professor Amy Weinberg
Professor William Idsardi
Professor Michael Collins
Professor Bonnie Dorr

For my friends and colleagues.

ii

Acknowledgements

Anything I write here will be an inadequate expression of the thanks owed to many

people who helped me complete this dissertation. My advisor, Philip, has been a con-

stant source of ideas (brainstorming with him is like drinking from a fire-hose); but, his

most important contribution has been his enthusiasm for my work, and his ability to con-

vince me of the possibilities that it holds. He is especially thanked for patiently suffering

through too many very rough drafts of this document, as well as waiting too long for the

final draft.

The project leader from the CLSP Summer Workshop at Johns Hopkins in 2006,

Philipp, is probably more directly responsible than anyone else for me ending up with this

thesis topic. He supported me as an unofficial advisor, as well as occasional benefactor,

funding a couple trips to conferences, workshops, and a three month stint in his lab at the

University of Edinburgh. While in Edinburgh, I worked with many terrific collaborators

and friends (Abhishek, Abby, Barry, Hieu, Josh, Lexi, Sharon, Trevor, and Miles). In par-

ticular among my Edinburgh colleagues, Phil Blunsom deserves mention for his influence

on this work. Not only did he convince me to bring more rigor and precision to what I do,

but he taught me most of what I know about CRFs and Bayesian inference.

From the 2006 workshop, I must also thank Nicola Bertoldi, Marcello Federico,

and Richard Zens. Although I had nothing to do with their project, I was so intrigued by

their work adding confusion network decoding to Moses (and the modeling possibilities

iii

that it afforded) that I decided to replicate their work with Hiero, leading more or less

directly to the core idea of ‘translating ambiguity’ that is explored in this dissertation.

The Maryland linguistics department has been a great place to work these last 5

years. Although my research interests ended up being outside of the mainstream of lin-

guistics, they have been consistently supportive of my work. My colleagues in the CLIP

lab (David, Asad, Eric, Michael, Smara, Vlad, Hendra, Yuval, and Jordan) have been

good friends and helped shape many ideas in this work. Adam Lopez deserves special

mention–the lab has not been the same since he left. Finally, the tireless efforts of the

UMIACS support staff (particularly Mark, Fritz, and Janet) have meant that the technical

aspects of this work were never hampered by computing issues. I am already dreading

future labs without them.

During graduate school, I’ve had a ‘second home’ at the CLSP at JHU, where the

faculty (especially Fred, Jason, and Sanjeev) have been extremely supportive of me, de-

spite having no formal affiliation with their institution. Fred Jelinek let me take his course

on speech recognition, an experience for which I’m particularly grateful in light of his

recent passing, and Jason Eisner has helped me with technical aspects of this work on

several occasions. The students there (Markus, Zhifei, Jason, Delip, Juri, Jonny, Anni,

Byung-Gyu, and Omar) have been my friends and collaborators. Finally, since joining

the faculty two years ago, Chris Callison-Burch has been a good friend and confidant.

I also wish to thank Noah Smith, who has not only given me a job but patiently

allowed me to delay my start date and turn in the final draft of my thesis after starting.

This was done with far less grumbling about it than was deserved. His comments on

earlier portions of this thesis have also been invaluable.

iv

Most especially, I would thank my friends, Herb, George, Todd, and Matt, for help-

ing me to hold on to a few shreds of sanity during this whole adventure. When I’m able

to have a life again, I look forward to seeing them.

v

This research was supported in part by the GALE program of the Defense Advanced

Research Projects Agency, Contract No. HR0011-06-2-001. Any opinions, findings,

conclusions or recommendations expressed in this work are those of the author and do not

necessarily reflect the view of DARPA. Further support was provided by the EuroMatrix

project funded by the European Commission (7th Framework Programme), the Army

Research Laboratory, and the National Science Foundation under contract IIS-0838801.

vi

Contents

Dedication ii

Acknowledgements iii

Contents vii

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Outline of the dissertation . 3
1.2 Research contributions . 5

1.2.1 Formal foundations . 5
1.2.2 Machine learning . 5
1.2.3 Applications . 6

2 A formal model of ambiguity in language and language processing 8
2.1 Formal preliminaries . 11

2.1.1 Semirings . 13
2.1.2 Weighted sets and relations . 15
2.1.3 Operations over weighted sets and relations 16

2.1.3.1 Weighted union . 16
2.1.3.2 Weighted intersection 17
2.1.3.3 Weighted projection 18
2.1.3.4 Weighted composition 19
2.1.3.5 Weighted inversion 20
2.1.3.6 Total weight of a set 20

2.1.4 Weighted sets as matrices . 21
2.1.5 A general model for ambiguity processing 22

2.1.5.1 Decision rules . 23
2.1.5.2 Example . 24

2.2 Tractable representations of weighted sets and relations 30
2.2.1 Weighted finite-state automata and transducers 31
2.2.2 Weighted context-free grammars and weighted synchronous CFGs 33

2.2.2.1 Hypergraphs as grammars 39
2.2.2.2 Pushdown automata and transducers 40

2.2.3 Selecting a representation: finite-state or context-free? 41
2.3 Algorithms for composition of a WFST and a WSCFG 43

2.3.1 Intersection of a WFSA and a WCFG 44
2.3.1.1 Weighted deductive logic 46
2.3.1.2 A top-down, left-to-right intersection algorithm 47
2.3.1.3 Converting the item chart into G∩A 50

vii

2.3.1.4 Alternative forms of G∩A 52
2.3.1.5 Remarks on the relationship between parsing and inter-

section . 54
2.3.2 From intersection to composition 55

2.3.2.1 A top-down, left-to-right composition algorithm 56
2.3.2.2 A bottom-up composition algorithm 58

2.3.3 A note on terminology: sets vs. relations 59
2.3.4 Application: Synchronous parsing via weighted composition . . . 61

2.3.4.1 The two-parse algorithm 62
2.3.4.2 Two-parse algorithm experiments 65

2.4 Inference . 69
2.4.1 Correspondences between WFSTs and WSCFGs 70
2.4.2 Computing the total weight of all derivations 70
2.4.3 Computing marginal edge weights 73

2.5 Summary . 73

3 Finite-state representations of ambiguity 76
3.1 An introduction to statistical machine translation 78

3.1.1 Language models . 80
3.1.2 Translation models . 82

3.1.2.1 Phrase-based translation 82
3.1.2.2 Hierarchical phrase-based translation 87

3.1.3 Model parameterization: linear models 91
3.1.4 Minimum error rate training (MERT) 93

3.1.4.1 Line search and error surfaces 94
3.1.4.2 The upper envelope semiring 101
3.1.4.3 Minimum error training summary 108

3.1.5 Translation evaluation . 109
3.2 Translation of WFST-structured input 110

3.2.1 Sources of input finite-state ambiguity 110
3.2.2 Properties of finite-state inputs 112
3.2.3 Word lattice phrase-based translation 115
3.2.4 Word lattice translation with WSCFGs 117

3.3 Experiments with finite-state representations of uncertainty 118
3.3.1 Spoken language translation . 119
3.3.2 Morphological variation . 125

3.3.2.1 Czech morphological simplification 127
3.3.2.2 Arabic diacritization 131

3.3.3 Segmentation alternatives with word lattices 134
3.3.3.1 Chinese segmentation 134
3.3.3.2 The distortion problem in word lattices 135
3.3.3.3 Chinese segmentation experiments 137
3.3.3.4 Arabic segmentation experiments 140

3.4 Summary . 143

viii

4 Learning from ambiguous labels 145
4.1 Conditional random fields . 148

4.1.1 Training conditional random fields 152
4.1.2 Example: two CRF segmentation models 155

4.2 Training CRFs with multiple references 156
4.3 Word segmentation and compound word segmentation 160

4.3.1 Compound segmentation for MT 161
4.3.2 Reference segmentation lattices for MT 163

4.4 Experimental evaluation . 165
4.4.1 Segmentation model and features 166
4.4.2 Training data . 169
4.4.3 Max-marginal pruning . 171
4.4.4 Intrinsic segmentation evaluation 173
4.4.5 Translation experiments . 174

4.5 Related work . 177
4.6 Future work . 178
4.7 Summary . 182

5 Context-free representations of ambiguity 183
5.1 Reordering forests . 185

5.1.1 Reordering forests based on source parses 188
5.1.2 What about finite-state equivalents? 190

5.2 Modeling . 193
5.2.1 A probabilistic translation model with a latent reordering variable 194
5.2.2 Conditional training . 195

5.3 Experiments . 198
5.3.1 Reordering and translation features 200
5.3.2 Qualitative assessment of reordering model 201
5.3.3 Translation experiments . 201

5.3.3.1 Training for Viterbi decoding with MERT 203
5.3.3.2 Translation results . 204

5.3.4 Model complexity . 207
5.4 Related work . 208
5.5 Future work . 210
5.6 Summary . 212

6 Conclusion 213
6.1 Future work . 214

Bibliography 222

ix

List of Tables

2.1 Elements of common semirings. 14

2.2 Elements of the probability and tropical semirings. 26

2.3 The qVit weight function. 29

2.4 Output weight computed using different processing strategies. Bold indi-
cates the highest weighted output for a particular strategy. 30

2.5 Language closure properties under intersection. 42

2.6 Comparison of synchronous parsing algorithms on Arabic-English. 66

2.7 Comparison of synchronous parsing algorithms on Chinese-English. . . . 68

2.8 Summary of correspondences between WFSTs (§2.2.1) and WSCFGs
(§2.2.2). 71

3.1 Phrases up to size 4 (source side) extracted from the aligned sentence pair
in Figure 3.1. 84

3.2 Upper envelope semiring. See text for definitions of LOWERHULL and
the run times of the operations. 103

3.3 Topologically ordered chart encoding of the three lattices in Figure 3.9.
Each cell i j in this table is a triple 〈Fi j,pi j,Ri j〉 115

3.4 Confusion network statistics for test sets. 121

3.5 Chinese-English results for IWSLT-2006. Confusion net WER numbers
are oracles. 122

3.6 Arabic-English training data. Sizes are in millions (M) of words. 123

3.7 Arabic-English results (BLEU) for BNAT05-test 124

3.8 Corpus statistics, by language, for the WMT07 training subset of the
News Commentary corpus. 128

3.9 Examples of different Czech preprocessing strategies. 128

3.10 Czech-English results on WMT07 Shared Task DEVTEST set. The sam-
ple translations are translations of the sentence shown in Figure 3.13. . . . 130

x

3.11 Six diacritizations of the Arabic phrase strmm AljdrAn (adapted from
Diab et al. (2007)). 133

3.12 Results of Arabic diacritization experiments. 133

3.13 Effect of distance metric on phrase-based model performance. 138

3.14 Effect of distance metric on hierarchical model performance. 138

3.15 Chinese word segmentation results. 140

3.16 Example translations using the hierarchical model 141

3.17 Arabic morpheme segmentation results 143

4.1 German lexicon fragment for words present in Figure 4.4. 164

4.2 Features and weights learned by maximum marginal conditional like-
lihood training, using reference segmentation lattices, with a Gaussian
prior with µ = 0 and σ2 = 1. Features sorted by weight magnitude. 168

4.3 Training corpus statistics. 170

4.4 Translation results for German-English, Hungarian-English, and Turkish-
English. Scores were computed using a single reference and are case
insensitive. 175

5.1 Corpus statistics . 200

5.2 Translation results (BLEU) . 204

5.3 Number of translations in the WFST model vs. rules in the hierarchical
phrase-based WSCFG model. 207

xi

List of Figures

1.1 Comparison of the forms of the inputs (x), outputs (y|x), and of the refer-
ences in the training data (y*) in Chapters (3), (4), and (5). 4

2.1 A weighted set representing a distribution over inputs (a) and a weighted
relation representing a transducer (b). 27

2.2 A graphical representation of a weighted finite-state automaton. 32

2.3 Encoding the WFSA in Figure 2.2 as a weighted context-free grammar.
Note that the start symbol is C. 36

2.4 Example of a weighted synchronous context-free grammar (WSCFG).
Note that C is the start symbol. 37

2.5 Example synchronous derivation using the WSCFG shown in Figure 2.4. . 38

2.6 The SCFG from Figure 2.4 represented as a hypergraph (note: weights
are not shown). 40

2.7 Weighted logic program for computing the intersection of a WCFG, G =
〈Σ,V,〈S,σ〉,〈R,υ〉〉, and a WFST, A = 〈Σ,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉. 49

2.8 A WCFG representing a weighted set of infinite size (above) and a WFSA
representing the finite weighted set {John thought Mary left : 0.8,Mary left :
0.2} over the probability semiring (below). 51

2.9 Item chart produced when computing the intersection of the WCFG and
the WFSA from Figure 2.8 using the top-down filtering program shown
in Figure 2.7. 52

2.10 Converting the item chart from Figure 2.9 into the intersection grammar
WCFG G∩A. 53

2.11 Weighted logic program for computing the composition of a WFST T =
〈Σ,∆,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉, and WSCFG G = 〈∆,Ω,V,〈S,σ〉,〈R,υ〉〉. . 57

2.12 Weighted logic program for computing the intersection of a WSCFG, G =
〈Σ,∆,V,〈S,σ〉,〈R,υ〉〉, and an acyclic WFST, A= 〈∆,Ω,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉
using bottom-up inference. 60

2.13 The two WFSTs, E and F , required to compute the synchronous parse of
the pair 〈a b c,x y z〉. 63

xii

2.14 Average synchronous parser run-time (in seconds per sentence) as a func-
tion of Arabic sentence length (in words). 67

2.15 Average synchronous parser run-time (in seconds per sentence) as a func-
tion of Chinese sentence length (in words). 68

2.16 The INSIDE algorithm for computing the total weight of a non-recursive
WFST or WSCFG. 72

2.17 The OUTSIDE and INSIDEOUTSIDE algorithms for computing edge marginals
of a non-recursive WFST or WSCFG. 74

3.1 A German-English sentence pair with word alignment and two consistent
phrases marked. 83

3.2 A fragment of the search space for a phrase-based decoder, reprinted from
Koehn (2004). 86

3.3 An example of a hierarchical phrase based translation. Two equivalent
representations of the translation forest are given. Example adapted from
Li and Eisner (2009). 90

3.4 A set of three derivations as lines. The height on the y-axis represents the
model score of the derivation as a function of x, which determines how
far along the descent vector v the starting parameters Λ are translated. . . 97

3.5 Primal and dual forms of a set of lines. The upper envelope is shown
with heavy line segments in the primal form. In the dual plane, an upper
envelope of lines corresponds to the extreme points of a lower hull (lower
hull shown with dashed lines). 99

3.6 A hidden line `′ is obscured by the upper envelope in the primal form and
(equivalently) is not part of the lower hull in the dual form. 99

3.7 Each segment from the upper envelope (above) corresponds to a hypoth-
esis with a particular error score, forming a piecewise constant error sur-
face (below). The points a, b, c, and d are the transition points. 101

3.8 Adding two error surfaces (each from a single sentence) to create a cor-
pus error surface corresponding to the error surface of a development set
consisting of two sentences. 102

3.9 Three examples of word lattices: (a) sentence, (b) confusion network, and
(c) non-linear word lattice. 113

3.10 Three example lattices encoding different kinds of input variants. 114

xiii

3.11 The span [0,3] has one inconsistent covering: [0,1]+ [2,3]. 118

3.12 Example confusion network. Each column has a distribution over possi-
ble words that may appear at that position. 120

3.13 Example confusion network generated by lemmatizing the source sen-
tence to generate alternates at each position in the sentence. The upper
element in each column is the surface form and the lower element, when
present, is the lemma. 129

3.14 Example Chinese segmentation lattice using three segmentation styles. . . 135

3.15 Distance-based distortion problem. What is the distance between node 4
and node 0? . 136

3.16 Example of Arabic segmentation driven by morphological analysis. . . . 142

4.1 Two CRF segmentation models: a fully Markov CRF (above) and a semi-
Markov CRF (below). 149

4.2 A WFST encoding (weights not shown) of the posterior distribution of the
CRF from the upper part of Figure 4.1. The highlighted path corresponds
to the variable settings shown in the example. 152

4.3 Pseudo-code for training a segmentation CRF with reference lattices. . . . 160

4.4 Segmentation lattice examples. The dotted structure indicates linguisti-
cally implausible segmentation that might be generated using dictionary-
driven approaches. 164

4.5 Manually created reference lattices for the two words from Figure 4.4.
Although only a subset of all linguistically plausible segmentations, each
path corresponds to a plausible segmentation for word-for-word German-
English translation. 165

4.6 An example of a Fugenelement in the German word Unabhängigkeitserklärung
(English Declaration of Independence), where s is inserted as part of the
compounding process but does not occur with the words when they occur
in isolation. 168

4.7 A full segmentation lattice (WFST) as of the word tonband with a mini-
mum segment length of 2. 172

4.8 (Above) possible max marginals for the lattice in Figure 4.7; paths more
than 10 away from the best path are dashed; (below) lattice after max-
marginal pruning. 172

xiv

4.9 The effect of the lattice density parameter on precision and recall. 173

4.10 The effect of the lattice density parameter on translation quality and de-
coding time. 176

5.1 Two possible derivations of a Japanese translation of an English source
sentence. 186

5.2 A fragment of a phrase-based English-Japanese translation model, repre-
sented as an FST. Japanese romanization is given in brackets. 187

5.3 Example of a reordering forest. Linearization order of non-terminals is
indicated by the index at the tail of each edge. The isomorphic CFG is
shown in Figure 5.4; dashed edges correspond to reordering-specific rules. 189

5.4 Context free grammar representation of the forest in Figure 5.3. The
reordering grammar contains the parse grammar, plus the reordering-
specific rules. 190

5.5 Example reordering forest translation forest. 191

5.6 (Above) The 10 most highly-weighted features in a Chinese-English re-
ordering model. (Below) Example reordering of a Chinese sentence (with
English gloss, translation, and partial syntactic information). 202

5.7 Four example outputs from the Chinese-English CFG+FST and hierarchi-
cal phrase-based translation (Hiero) systems. 205

5.8 Four example outputs from the Arabic-English CFG+FST and hierarchi-
cal phrase-based translation (Hiero). 206

xv

1 Introduction

Theorists are apt to vex themselves with vain efforts to remove uncertainty

just where it has a high aesthetic value.

– Donald Francis Tovey (1935)

Neurosis is the inability to tolerate ambiguity.

–Sigmund Freud (1856–1939)

The quest for certainty blocks the search for meaning.

–Erich Fromm (1900–1980)

Most problems in natural language processing can be viewed as the transformation of

one input into one output. A parser transforms a sentence into a parse tree; a speech

recognizer transform an acoustic signal into text; and machine translation transforms text

in one language into another. This dissertation argues for going beyond this functional

relationship (i.e., choosing a single output for every input), because the ideal output of a

processing component is often inherently underdetermined by its input: for a single input,

there may be many possible correct analyses. In other words, it is (and often should be!)

1

ambiguous what the correct output is.1

With the rise of empirical methods, it has become commonplace to deal with the

problem of underdetermined outputs using statistics from large corpora to determine the

most likely analysis, given the information at hand. While this approach delivers reason-

able (and even very good) results on average, it will necessarily fail in particular cases.

Rather than attempting to improve the average performance with ever richer models con-

structed from larger corpora, this dissertation advocates an alternative paradigm: consid-

ering multiple analyses concurrently using standard processing models, but only commit-

ting to a single one as a last resort, typically after processing by a cascade of independent

modules. Thus, rather than accepting single inputs and producing single outputs, process-

ing components are formalized as applying transformations to sets of inputs and yielding

sets of outputs.

To provide a rigorous, but general framework, this ambiguity-preserving processing

model is defined abstractly in terms of weighted sets and relations. However, it can be in-

stantiated using familiar computational constructs: finite-state automata and context-free

grammars (together with their transducer equivalents). The remainder of the dissertation

is organized around a series of experiments (mostly focusing on problems in machine

translation) that are designed to show that this ambiguity-preserving paradigm is both

useful and tractable. In addition to the empirical verification of this model, a number

1The term ambiguity will be used more broadly than it is traditionally used in computational linguis-
tics. There, it most often refers to specific phenomena such as structural ambiguity, where more than one
structural description can characterize a sentence, or lexical semantic ambiguity, where a word in isolation
may have many meanings that are resolved with the incorporation of more contextual information (Allen,
1987). Here, I refer to ambiguity as the existence of multiple possible analyses that are compatible with an
input, as well as alternative possible inputs (typically derived from some ambiguous upstream processing
module). The ‘classical’ cases of ambiguity, as well as their resolution through the incorporation of more
knowledge, are naturally modeled in the framework utilized in this dissertation.

2

of novel algorithms are introduced, as well as contributions to several topics in machine

learning.

An outline of the structure of the dissertation is now given.

1.1 Outline of the dissertation

In Chapter 2 the ambiguity-preserving processing model is defined rigorously in terms

of weighted sets, binary relations, and operations over them. Under this model, deci-

sions about committing to an analysis are separated from the processing of values, and

multiple (i.e., ambiguous) values are handled naturally. While the definition is quite ab-

stract, I show that two classes of familiar formal objects serve as concrete instantiations

of it: weighted finite-state automata (WFSAs) and transducers (WFSTs), and weighted

context-free grammars (WCFGs) and synchronous context-free grammars (WSCFGs).

The chapter also includes a description of a new algorithm for computing the composi-

tion of a WFST and a WSCFG, and describes how the problem of synchronous parsing

can be viewed as two successive WFST-WSCFG composition operations, leading to a

novel synchronous parsing algorithm. These algorithms are used in the remainder of the

dissertation to provide efficient and practical implementations of the model’s fundamental

operations.

Chapters 3, 4, and 5 are organized around experiments designed to show the effec-

tiveness and tractability of the model introduced in Chapter 2. In each, I start with an

existing processing model that is ‘overly hasty’ in resolving ambiguities, which is then

recast in terms of the ambiguity-preserving model, and provide an experimental compari-

3

translation

x y|x

compoundword(4)

(3)

y*

reference 1
reference 2
reference 3
reference 4

(5) translation

reference 1
reference 2
reference 3
reference 4

Figure 1.1: Comparison of the forms of the inputs (x), outputs (y|x), and of the references
in the training data (y*) in Chapters (3), (4), and (5).

son of the performance of the two models. In Chapter 3, I show translation of ambiguous

inputs that have a finite-state structure using both WFST-based and WSCFG-based trans-

lation models. In Chapter 4, I revisit the supervised learning problem and consider how

it can be altered to deal with multiple correct labels for each training instance, which are

encoded compactly using finite-state representations. Chapter 5 then returns to the prob-

lem of translating input ambiguity; however, this time I explore the possibilities available

when the input has a context-free structure. In all cases, the ambiguity-preserving model

outperforms baselines. Figure 1.1 emphasizes the common elements of the three ‘empir-

ical’ chapters, comparing the form of the inputs, outputs, and training references in the

ambiguity-preserving variant of the processing model considered in that chapter.

Chapter 6 discusses extensions of the work presented in the dissertation as a whole

and draws general conclusions.

4

1.2 Research contributions

This dissertation makes a number of novel contributions in three broad areas: formal

foundations of NLP, machine learning, and applications (synchronous parsing, machine

translation, and word segmentation).

1.2.1 Formal foundations

• I define an algebra of weighted sets, based on general semirings, and suitable for

characterizing the kinds of ambiguity objects and relations that are encountered in

language, and use it to define a general model of language processing based on

the composition of binary relations. This formalization is independent of any par-

ticular grammatical or processing formalism, allowing the behavior of processing

pipelines to be characterized abstractly.

• I show that weighted finite-state automata (WFSAs) and transducers (WFSTs) and

weighted context free grammars (WCFGs) and synchronous context free grammars

(WSCFGs) are concrete instantiations of sets and relations in this system.

• I give novel algorithms for computing the weighted composition of one binary re-

lation represented as a WFST and another as a WSCFG.

1.2.2 Machine learning

• I introduce the upper envelope semiring and show that the line search used in mini-

mum error rate training (Och, 2003) can be reformulated in terms of this semiring,

5

which highlights its relationship to many other inference algorithms.

• I show how that the training of conditional random fields (CRFs) can be carried

out efficiently when there multiple reference labels (for each training instance) are

compactly encoded in a word lattice.

1.2.3 Applications

• I show that synchronous parsing (recognizing a string pair in two languages using a

WSCFG) can be formulated as two successive (weighted) composition operations,

rather than as a more specialized algorithms (that can be understood as computing

a 3-way composition). I give experimental results showing that this algorithm is

more efficient than the specialized algorithms on two important classes of WSCFG.

• I show that using a WFSA (specifically, a restricted WFSA called a word lattice)

representing a set of ambiguous input possibilities as the translation system pro-

duces better translation quality compared to making a forced choice to select a

single input sentence to be used. This result holds whether the translation model

uses a finite-state or context-free translation model.

• I show that text-only translation systems have input ambiguity that can be encoded

in a WFSA—decisions about stemming, segmentation, and other kinds of prepro-

cessing can be treated as part of the model, leading to improved translation quality.

• I describe how to use a semi-CRF model to build segmentation lattices which

decompose compound words into the smaller units (morphemes or smaller com-

6

pounds) that are useful for translation.

• I show that by using dense, linguistically motivated features in the segmentation

model, a model trained on German training data works effectively on Turkish and

Hungarian.

• Exploiting the fact that permutations can be compactly encoded in a context-free

structure, I introduce a novel translation model that reorders the source language

into a target-like order in the first phase and performs lexical transduction in the

second. This model achieves state-of-the-art performance.

7

2 A formal model of ambiguity in language and

language processing

John saw the man with the telescope.

–Syntax 101

Mathematics takes us still further from what is human, into the region of

absolute necessity, to which not only the actual world, but every possible

world, must conform.

–Bertrand Russell

Ambiguity is pervasive in language. A single sentence may be compatible with multiple

structural descriptions corresponding to different logical forms, individual words have

multiple meanings, phonemes are realized as different phones in different contexts, and

the acoustic features of phones vary again by context as well as from speaker to speaker.

Thus, effective language processing (whether attempting to determine what words were

spoken, what the intended meaning of a particular utterance was, or anything in between)

must be concerned to a large extent with resolving ambiguity.

In the last decades, the use of statistical models in natural language processing has

become commonplace. One reason for the success of such models is that they are a natural

8

fit for processes where ambiguity is found. Alternative (i.e., ambiguous) outcomes can be

characterized with a probability distribution reflecting the likelihood that any particular

analysis is the correct one, conditioning provides a mathematically rigorous means for

incorporating knowledge, and statistical decision theory (Berger, 1985) provides a robust

theoretical framework for selecting an analysis or interpreting the results.

Statistical modeling has led to considerable advances in the power and robustness

of virtually every kind of language processing component, from part-of-speech taggers

(DeRose, 1988) to parsing (Collins, 1996) to speech recognition systems (Jelinek, 1998)

to machine translation (Koehn, 2009). However, while these systems use probabilistic

inference internally to compute a result, it is still commonplace to define the inputs and

outputs as single values. In this conception of computation, the relationship between

inputs and outputs is one-to-one; there is an appropriate output for each input. Formally,

such relationships have the form of a function f of an input x from domain X to an output

y in its codomain Y , written f : X →Y . While this is certainly useful and often necessary

behavior in many cases, it is problematic in others.

1. In pipelines or networks of probabilistic processing components, if each component

only propagates its ‘best guess’, upstream errors may flow downstream, leading to

a compounding error rates.

2. For some tasks, the idea of an unambiguous input is inherently problematic. For

example, the objective of translation may be fairly characterized expressing the

meaning that underlies text in a source language in some target language. However,

the observed sentence is only one possible expression of that underlying meaning.

9

More mundanely, ambiguity with respect to preprocessing (such as how to divide a

character sequence in a language like Chinese whose orthography does not indicate

word boundaries) can be understood as a kind of ambiguity. Both of these consid-

erations suggest that a more proper input to a translation system is a distribution

over sentences.

3. Supervised learning techniques for statistical models require pairs of inputs and

labels. However, for many tasks, it may be problematic to identify a single correct

label. To continue with the conception of translation as a task that transforms the

meaning expressed in a source language into an expression in the target language

that corresponds to the same meaning, it is obvious that the inputs and outputs are

better characterized by distributions, not single labels.

Recent work has begun to address the issues associated with propagating uncertainty in

pipelines of processing components (Bunescu, 2008; Finkel et al., 2006; Ramshaw et al.,

2001). Furthermore, one can understand Bayesian inference, which has been widely used

for the modeling of language in the last ten years, as a technique for reasoning about

uncertainty. In the Bayesian framework, a probability reflects the degree of belief about

the truth or falsity of a hypothesis, and in inference, evidence is incorporated (via Bayes’

Law) to update these beliefs (Jaynes and Bretthorst, 2003). Crucially, full distributions

rather than single hypotheses are maintained throughout.

However, the latter two points in the above list have been mostly neglected, and the

common assumption that is made is that processing components naively assume that their

inputs or outputs must be reduced to a single, unambiguous value. This work addresses

10

all three problematic results of this assumption by permitting weighted sets of inputs and

outputs.

This first part of this chapter (§2.1) rigorously defines weighted sets, binary rela-

tions, and operations over them. By defining transduction operations and inference pro-

cesses in terms of set theoretic primitives (rather than specific classes of sets derived from

particular kinds of automata, as is commonly done), modeling issues can be explored

independently of their realization in particular algorithms and data structures. The inten-

tion is that results obtained will be meaningful for other realizations of the theoretical

primitives that are not considered explicitly.

Since the focus of this thesis is primarily on the problems associated with translation

between languages, many sets and relations of interest are infinite in size (since they

represent entire languages or relationships between languages). I therefore focus on two

widely used representations of infinite sets and relations: weighted finite-state transducers

(WFSTs) and weighted synchronous context-free grammars (WSCFGs). After providing

definitions of these objects, I describe their closure properties and then introduce several

algorithms that manipulate these objects.

2.1 Formal preliminaries

In the course of this work, several different representations of ambiguous inputs and their

use with transduction components that produce ambiguous outputs are explored. Since

it is convenient to discuss models of ambiguity processing without reference to specific

representations or algorithms, I develop a set of mathematical primitives that enable mod-

11

els and inference to be described generally. While probability theory offers one possible

framework, I instead opt to describe models and inference using weighted sets that are

manipulated using set theoretic operations. Not only can probabilistic models be instan-

tiated in this framework, but non-probabilistic models (which may have advantages in

some cases) can also be rigorously defined. Since language processing often deals with

large (and even infinite) sets and relations, it is useful to be able to appeal directly to for-

mal language and automata theory, which provide tools for representing and processing

sets of this magnitude. The mathematical framework used here makes this connection

explicit.

Weighted sets (of sentences, analyses, translations, etc.) are used to represent am-

biguous alternatives in inputs and outputs in my model of ambiguity processing. I first

begin by defining the characteristics of the weights used by requiring that they form a

semiring (§2.1.1). Although many of the models considered will be probabilistic, the

weights associated with elements of sets and relations are defined as generally as pos-

sible, which enables a number of computations and model types to be expressed using

the same basic structures and algorithms together with different semirings. Processing

modules are defined as weighted binary relations (§2.1.2), which permit a single input el-

ement to be associated with many (ambiguous) output elements (Partee et al., 1990). The

inference process, that is, constructing a weighted result set given a processing model

and some input, is defined in terms of set theoretic operations (§2.1.3). The weighted set

algebra I develop can be understood in terms of matrices and operations over matrices

(§2.1.4). Although I could develop this ambiguity processing model in terms of matrices,

this perspective is more difficult to unify with the automata and language theory work

12

that will be relied heavily upon, so this parallelism is only briefly discussed. This section

concludes with the statement of the formal model of ambiguity processing (§2.1.5).

Starting with a definition of weighted sets and relations is somewhat unconven-

tional: weighted sets and relations are more typically constructed in terms of specific

generating processes, using concepts from automata theory and formalized as rational

power series (Droste and Kuich, 2009; Kuich and Salomaa, 1985). While I will also ulti-

mately utilize such tools to represent weighted sets and relations in later chapters, I wish

to frame the problem of processing ambiguous inputs as generally as possible, without

making commitments to any specific representation or algorithms. To assist the reader in

understanding the formal primitives as well as the processing model I define, a detailed

example is given in §2.1.5.2.

2.1.1 Semirings

A semiring is an algebraic structure that I will use to characterize the behavior of weights

in weighted sets and relations as various operations (§2.1.3) are carried out over them

(Droste and Kuich, 2009).

Definition 1. A semiring K is a quintuple 〈K,⊕,⊗,0,1〉 consisting of a set K (e.g., the

reals, natural numbers, {0,1}, etc.), an addition operator ⊕ that is associative and com-

mutative, a multiplication operator ⊗ that is associative, and the values 0 and 1 in

K, which are the additive and multiplicative identities, respectively. ⊗ must distribute

over ⊕ from the left or right (or both), that is that a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) or

(b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a). Additionally, 0⊗ u = 0 must hold for any u ∈ K. If a

13

Table 2.1: Elements of common semirings.

semiring K ⊕ ⊗ 0 1 notes
Boolean {0,1} ∨ ∧ 0 1 idempotent
count N0∪{∞} + × 0 1
probability R+∪{∞} + × 0 1
tropical R∪{−∞,∞} max + −∞ 0 idempotent
log R∪{−∞,∞} ⊕log + −∞ 0

semiring K has a commutative ⊗ operator, the semiring is said to be commutative. If

K has an idempotent ⊕ operator (i.e., a⊕ a = a for all a ∈ K), then K is said to be

idempotent.

Table 2.1 lists several common semirings (Mohri, 2009).1 All of these are commu-

tative semirings.

Intuitively, addition operations are associated with set union operations, and mul-

tiplication is associated with intersection operations. By altering the semiring, the same

set theoretic operations will result in different derived weight functions corresponding to

different quantities of interest (for an example, see §2.1.5.2).

In this thesis, all semirings will be commutative. Non-commutative semirings re-

quire careful handling when used with the context-free structures I will be working with

(Goodman, 1999; Li, 2010).
1The operator ⊕log is defined as:

a⊕log b = log
(

ea + eb
)

14

2.1.2 Weighted sets and relations

Definition 2. A weighted set W = 〈A,w〉 over a semiring K is a pair of a set A and a

weight function w : A→ K. By abuse of notation, let w(S) be defined where S ⊆ A as

follows:

w(S) =

⊕

x∈S w(x) |S|> 0

0 otherwise

(2.1)

For most of the applications considered below, A will frequently be sets of sentences

from a finite vocabulary Σ (i.e., subsets of the free monoid Σ∗). Depending on the model

and application, weights will be defined in differently, but often they will represent a

probability distribution such that K= R+∪{∞} and ∑x∈A w(x) = w(A) = 1.

Definition 3. A weighted binary relation 〈R,u〉 is a weighted set over semiring K where

R⊆ X ×Y specifies how elements from domain X map into codomain Y as with a weight

function u : R→K.

I will also refer to this as a weighted transducer.2 The weight set K is defined generally

and may be used for a variety of purposes. Often I will use K=R+ where values represent

probability densities of various kinds (either joint probabilities of the events p(x,y) or

conditional probabilities p(y|x) or p(x|y)).

Although these concepts are defined for general sets, I focus in particular on subsets

of Σ∗ and relations that are subsets of Σ∗×∆∗, where Σ and ∆ are finite vocabularies from

different languages.

2This is not to be confused with a weighted finite-state transducer (§2.2.1), which is a particular repre-
sentation of a weighted binary relation.

15

It will often be useful to treat a set A with weight function u : A→ K as a relation

RA with weight function w : RA→K where:

w(x,x) = u(x)

RA ⊆ A×A = {(x,y) : x = y}

I will refer to this construction as an identity-relation or identity-transducer.

2.1.3 Operations over weighted sets and relations

With this formal representation for ambiguous inputs and relations, several operations that

manipulate sets and relations may be defined: union (§2.1.3.1), intersection (§2.1.3.2),

projection (§2.1.3.3), composition (§2.1.3.4), and inversion (§2.1.3.5). The processing of

ambiguous inputs and pipelines of ambiguous transduction components (§2.1.5) will be

defined using these operations and the representations from above.

2.1.3.1 Weighted union

Definition 4. Given weighted sets 〈A,u〉 and 〈B,v〉 over semiring K, let the weighted

union 〈A,u〉∪ 〈B,v〉= 〈A∪B,w : A∪B→K〉 be defined as follows:3

3In general, the domain of a weight function is clear. In some cases it is useful to be able to assign a
weight of 0 to values outside of this set.

16

A∪B = {x : x ∈ A∨ x ∈ B}

w(x) =

u(x)⊕ v(x) x ∈ A∧ x ∈ B

u(x) x ∈ A∧ x /∈ B

v(x) x /∈ A∧ x ∈ B

Note that in standard set theory, union is an idempotent operation, that is A∪A=A. While

this continues to be true with respect to set membership, a union operation according to

this definition induces a new weight function which may differ from that of the operands,

unless K is idempotent (§2.1.1).

2.1.3.2 Weighted intersection

Definition 5. Given weighted sets 〈A,u〉 and 〈B,v〉 over semiring K, let the weighted

intersection 〈A,u〉∩ 〈B,v〉= 〈C,w : C→K〉 be defined as follows:

A∩B = {x : x ∈ A∧ x ∈ B}

w(x) =

u(x)⊗ v(x) x ∈ A∧ x ∈ B

0 otherwise

One particularly useful application of intersection is the application of a language model

(§3.1.1) in a noisy channel speech recognition system (Jelinek, 1998). For some utter-

17

ance u (which is a vector of acoustic observations), let A be a set of sentences that a

recognizer is capable of recognizing with a weight function u that assigns the likelihood

that each element, a sentence w, generated the utterance: p(u|w). If B is a language

model, that is, the set of all sentences in the recognition language with a weight function

v that represents the (prior) probability of each sentence occurring in the language, then

〈A,u〉∩ 〈B,v〉 computes the set of sentences corresponding to the utterance u, weighted

by their posterior probabilities.

2.1.3.3 Weighted projection

Definition 6. Given a weighted binary relation 〈R,u〉 over semiring K where R⊆ X ×Y ,

one may project R onto its domain or codomain, resulting in a weighted set. Projection

onto its codomain (or output projection), 〈R,u〉↓= 〈A,w〉 is defined as follows.

A = {y | ∃x ∈ X : (x,y) ∈ R} (⊆ Y)

w(y) =
⊕

x∈X :(x,y)∈R

u(x,y)

Projection onto the domain (or input projection), ↓〈R,u〉, is defined similarly. Also note

that in the probability semiring, given a joint probabilistic weighting u(x,y) = p(x,y),

projection is equivalent to marginalizing out a variable.

18

2.1.3.4 Weighted composition

Definition 7. Given two weighted binary relations 〈R⊆ X ×Z,u : R→K〉 and 〈S⊆Z×

Y ,v : S→ K〉 over semiring K, their composition 〈R,u〉 ◦ 〈S,v〉 = 〈R ◦ S,w : R ◦ S→ K〉

is defined as follows.

R◦S = {(x,y) ∈ X ×Y | ∃z ∈ Z : (x,z) ∈ R∧ (z,y) ∈ S} ⊆ X ×Y

w(x,y) =
⊕

z∈Z:(x,z)∈R∧(z,y)∈S

u(x,z)⊗ v(z,y)

From this definition, it is not difficult to show that composition is associative, i.e., (S ◦

R)◦T = S◦ (R◦T).

Furthermore, Assuming that X and Y are conditionally independent given Z, com-

position is equivalent to marginalizing out a latent variable. If p(z|y) = w(y,z) and

p(x,y)=w(x,y) then p(x,y,z)=w(x,y)·w(y,z) and p(x,z)=w(x,z). Likewise if p(z|y)=

w(y,z) and p(y|x) = w(y,x) then p(z,y|x) = w(x,y) ·w(y,z) and p(z|x) = w(x,z).

Intuitively, weighted composition can be thought of as finding a mapping from X

to Z, summing over all paths taken through some intermediate step Y . As an illustration

X may represent sentences in a source language, Y may be source sentences divided into

phrases, and Z target language sentences.

Further note that composition is a generalization of the intersection operation de-

scribed above.

19

2.1.3.5 Weighted inversion

Definition 8. Given a weighted binary relation 〈R⊆ X ×Y ,u : R→K〉 over semiring K

its inversion 〈R,u〉−1 = 〈S,v〉 is defined as follows:

S = {(y,x) : (x,y) ∈ R} ⊆ Y ×X

v(y,x) = u(x,y)

The following theorem is useful since it says that using inversion can be used to switch

the order of operands in a composition operation.

Theorem 1. (Inversion theorem). Given weighted binary relations 〈R,u〉 and 〈S,v〉, then

〈R,u〉 ◦ 〈S,v〉= (〈S,v〉−1 ◦ 〈R,u〉−1)−1 .

Proof. The proof follows directly from the definitions of weighted inversion and weighted

composition.

2.1.3.6 Total weight of a set

Definition 9. The total weight of a weighted set 〈A,u〉 over semiring K is a value w ∈K,

defined as follows:

20

w =
⊕
a∈A

u(a)

The total weight of a set corresponds to a variety of useful quantities. In the log semiring,

it corresponds to the value of the partition function, which can be used to renormalize the

weight function into a probability distribution. In the tropical semiring, it is the maximum

weight in the set. For sets of infinite cardinality, this quantity may be infinite (which also

requires that K contain infinities) or finite.

2.1.4 Weighted sets as matrices

The weighted sets and operations over them that were just defined can be understood,

respectively, as matrices and matrix operations (Bhatia, 1996), where the matrices are

indexed by elements from an arbitrary set (or, in the case of binary relations, pairs of

elements from two sets) and where the value is the weight function applied to that ele-

ment or pair. A weighted set is therefore a vector (possibly of infinite dimensionality, or

empty), and binary relations are two-dimensional matrices. The identity-relation (§2.1.2)

is equivalent to an identity matrix.

The weighted operations defined in the previous section also have matrix theoretic

equivalents. Composition is equivalent to matrix multiplication; union is matrix addition;

and intersection is the Hadamard product. What is called weighted inversion (of a binary

relation) here is equivalent to matrix transposition.4 I will not rely particularly heavily on

4This operation should not be confused with the concept of the matrix inverse.

21

this interpretation, except as a means to more thoroughly explain weighted set calculus.

However, it is worth keeping in mind since matrix calculus may provide a useful source

of operations, and the automata theory literature remarks on the parallelism (e.g., Mohri

(2009)).5

I do note that since matrices are usually defined over fields and not semirings (fields

are semirings with the addition of subtraction and division and the requirement that ad-

dition and multiplication commute), many common matrix operations (inverse, determi-

nant, permanent, etc.) have no correspondence in the weighted set algebra defined above.

2.1.5 A general model for ambiguity processing

Using the definitions from the preceding section, it is now possible to formulate a gen-

eral statement for a processing component that accepts ambiguous inputs and produces

ambiguous outputs. It may be helpful to refer to the example in §2.1.5.2 while reading

this section. Given a weighted transducer 〈T,v〉 where T = X ×Y and v : T → K, some

ambiguous input 〈I,u〉 where I ⊆ X is a set of ambiguous inputs and u : I → K is its

weighting, let 〈O,w〉, the output set O ⊆ Y with weighting w : O→ K be defined as

follows:

〈O,w〉= (〈I,u〉 ◦ 〈T,v〉)↓
5Although weighted synchronous context-free grammars can be used as weighted binary relations

(§2.2.2), and the composition operation with finite automata is comparable to a generalized parsing al-
gorithm (§2.3.1), the correspondences between Boolean matrix multiplication and parsing explored by Lee
(2002) are not directly related to this view of weighted sets as matrices and composition as matrix mul-
tiplication. In Lee’s formulation, Boolean matrix multiplication is used to formalize the parsing process
(specifically, the search for all possible sub-spans that can derive a larger span), whereas here it is used as a
means of transforming an entire language (not just a single sentence) via a relation.

22

The specific values computed will, of course, depend on the semiring used for the com-

position and projection operations.

The ‘greedy’ pipeline approach that is often taken in naı̈ve architectures, where a

single ‘best’ analysis (§2.1.5.1) is selected from among a set of ambiguous inputs and

used as if it were certain, can be understood as a special case where |I|= 1.

Note that this computation has a probabilistic interpretation if the semiring used for

the composition and projection operations is the probability semiring. Let I be weighted

according to a distribution u(x) = p(x|o) where x is the output of, for example, a prepro-

cessing step with input o, and T is a transducer is weighted according to a conditional

distribution p(y|x); then the composition and projection computation produces an output

set O that is weighted according to the posterior distribution p(y|o) = ∑x p(y|x) · p(x|o).

When used in a pipeline where the output of one module becomes the input to the next,

this corresponds to the pipeline model advocated by Finkel et al. (2006).

2.1.5.1 Decision rules

It is often necessary to select a single ‘best’ value from a weighted set 〈A,w〉. The strategy

used is referred to as a decision rule. A very commonly used one is the maximum weight

rule, which says to select the element with the maximum weight:

x̂ = argmax
x∈A

w(x)

Note that this decision rule requires that the weights assigned by w have a partial ordering.

While this is not a requirement for the semirings used with weighted sets, many of the

23

value sets (the K’s) used do fulfill this requirement.

Aside from maximum weight, other decision rules are possible. One alternative

criterion that is often used in a variety of applications is to select an element from the

set so as to minimize risk (expectation of loss) with respect to a specified loss function

(Kumar and Byrne, 2004). This requires that the weighting of the set have a probabilistic

interpretation as well as a supplemental loss function ` : A×A→ R+ that indicates how

‘bad’ a hypothesis is compared to a reference. The Bayesian minimum risk decision

function is defined as follows:

x̂risk = argmin
x ∑

x′∈A
w(x′)`(x,x′)

= argmin
x

Ep(x′)`(x,x
′)

Minimum risk decision rules are useful in cases when the task is to maximize performance

with respect to a particular loss function; however, they are generally more expensive to

use than maximum weight rules. Minimum risk is equivalent to maximum weight when

`(x,x′) = 0 when x = x′ and 1 otherwise.

The maximum weight decision rule will be used in all experiments in this disserta-

tion.

2.1.5.2 Example

Consider now a more detailed example of modeling an ambiguous processing pipeline

and carrying out inference using the ambiguity processing model defined in §2.1.5. In

24

this section, I define an example distribution over inputs, an example transducer, and

compute an output using three techniques: compose and project using the probability

semiring, compose and project using the tropical semiring, and a ‘greedy’ processing

approach (Figure 2.1).

The example task a system that translates elements from an input language X (in

this case, letters) into an output language Y (in this case, card suits). However, I assume

that direct observations of the sentences in X are unavailable, instead only a distribution

over possibilities is available. Let the distribution over inputs be represented as I ⊆ X

together with a weight function p : I→R+ that maps an element x ∈ I onto a positive real

number representing the probability p(x), such that ∑x∈I p(x) = 1. To further complicate

matters, the translation process is itself ambiguous: even if there was complete certainty

about the input, there would be multiple possible outputs. The translation process is there-

fore represented as a binary relation R⊆ X ×Y with a weight function w : R→ R+ that

maps pairs of inputs and outputs (x,y) ∈ R onto a positive real number representing the

conditional probability p(y|x), that is, the probability that y is the the desired translation

given input x. Let X , Y , I, and R be defined as shown below. The complement relation of

25

R (designated S) is given for clarity.

X ={a,b,c}

Y ={♠,♣,�}

I =X

R ={〈a,♠〉,〈a,♣〉,〈a,�〉,〈b,♣〉,〈b,�〉,〈c,♠〉,〈c,�〉} ⊆ X ×Y

S = (X ×Y)\R ={〈b,♠〉,〈c,♣〉}

Let the weight functions p and w be defined as indicated in Figure 2.1. Given I and R and

their weight functions, I compare three different possibilities to compute an output set

O⊆ Y and its weight function q : O→R+. For each, the ‘the best’ translation according

using the maximum weight decision rule will be selected.6

I distinguish three approaches for computing O: (1) greedy decision making, (2)

weighted composition using the probability semiring, and (3) weighted composition using

the tropical semiring. For reference, the elements of the probability and tropical semirings

are shown again here in Table 2.2. Note that they differ only in the definition of the ⊕

operator.

Table 2.2: Elements of the probability and tropical semirings.

semiring K ⊕ ⊗ 0 1
probability R+ + × 0 1
tropical R+ max × 0 1

6This decision rule can only be used when the range of the weight function is a partially ordered set.
This is not a requirement of the value set in a semiring.

26

a 0.4

b 0.3

c 0.3

a

b

c

♠

♣

♦

0.4

0.3

0.3

0.6

0.4

0.45
0.55

(a) (b)

I

R

Figure 2.1: A weighted set representing a distribution over inputs (a) and a weighted
relation representing a transducer (b).

Greedy processing. As noted above, greedy processing refers to a strategy that uses a

decision rule to select a single input from among ambiguous ones and further processing

is carried out as if this were an unambiguous input. I use the maximum weight decision

rule, which in the case of the example selects a. If a is treated as the unambiguous input

to the transducer in Figure 2.1(b), then the output set is the set consisting of the right-hand

component of all elements in R whose left-hand component is a. Thus, O= {♠,♣,�} and

the weight function can be defined to be the weighting from the corresponding elements

in Y , that is q(y) = w(a,y). The first line in Table 2.4 gives the posterior weighting on

output symbols computed using this strategy. Using the maximum weight decision rule

on 〈O,q〉 yields the output ŷ =♠.

27

Compose and project using the probability semiring. The compose and project strat-

egy is more intuitively satisfying because it does not throw away information the way the

greedy processing approach does. I begin with an example where K is the probability

semiring. Using the sets and weights specified in Figure 2.1, the result is the same out-

put set as with the greedy processing rule O = {♠,♣,�}, but a different weight function

qprob, shown in the following table.

y qprob(y)
♠ 0.4×0.4+0.3×0.45 = 0.295
♣ 0.4×0.3+0.3×0.6 = 0.4
� 0.4×0.3+0.3×0.4+0.3×0.55 = 0.405

Using the maximum weight decision rule on this set yields the output �. Note that the

results of this computation are a proper probability distribution (i.e., they sum to 1 and

are non-negative).

Compose and project using the tropical semiring. While compose and project using

the probability semiring fulfills the requirement of incorporating a distribution over inputs

(in contrast to the greedy approach), it is often desirable for efficiency reasons to make

use of the tropical semiring, which, rather than summing over all intermediate stages in

the transduction, selects the maximum.7 As a result, while the output set is the same as in

the previous two cases, its weight function is different yet again, as shown in Table 2.3.

7For readers familiar with hidden Markov Models (HMMs; Jelinek (1998)), using the tropical semiring
is equivalent to doing decoding by selecting the Viterbi path (the best single path) from an HMM, whereas
using the log semiring and maximum weight decision rule is more similar to MAP decoding, which selects
the maximum probability state at each time, given the observation sequence.

28

Table 2.3: The qVit weight function.

y qVit(y)
♠ max{0.4×0.4,0.3×0.45} = 0.16
♣ max{0.4×0.3,0.3×0.6} = 0.18
� max{0.4×0.3,0.3×0.4,0.3×0.55} = 0.165

Summary of processing strategies. The three different processing strategies all pro-

duce different results, as the summary in Table 2.4 makes clear. But which one should

be utilized? In general, this is a matter of taste or an empirical question: which one

works best. However, a priori, the ‘greedy’ approach seems quite poor, since it uses a

single element from the input set to represent the entire set. The probability semiring is

arguably more appealing than the tropical semiring since it combines evidence from all

input-output pairs, whereas the Viterbi approach just selects a maximum from among all

pairs. In a naı̈ve implementation, where sets are represented with an exhaustive list of

their members (and therefore necessarily limited to be of certainly finite and probably

rather small sizes), there is no difference between the complexity of using the tropical

semiring in conjunction with the maximum weight decision rule. But, this will not be

the case when automata of various kinds are used to compactly represent sets. In this

case, the requirement of only keeping track of a single maximum makes the search for

the maximum of the whole set very efficient to compute.

29

Table 2.4: Output weight computed using different processing strategies. Bold indicates
the highest weighted output for a particular strategy.

♠ ♣ � ŷ
greedy 0.4 0.3 0.3 ♠
probability 0.295 0.4 0.405 �
Viterbi 0.16 0.18 0.165 ♣

2.2 Tractable representations of weighted sets and relations

In the preceding section, weighted sets, binary relations, and several operations (union,

intersection, composition, etc.) were defined, and I showed how ambiguous transduction

operations can be formalized in terms of these primitives. I now explore possibilities for

compactly representing weighted sets and transducers. In the example from the previous

section, the sets and relations used were small enough that they could be represented

simply by enumerating each element and its weight explicitly in a list. The operations

could be implemented by iterating over the elements in the relevant sets and performing

the specified operations. Unfortunately, most of the sets that are encountered in language

applications will be far too large (if not infinite) for this naı̈ve representation, so more

sophisticated methods must be used.

Fortunately, formal language theory provides a means to define very large weighted

sets of strings and relations over strings, as well as the necessary operations. The focus

will be on two weighted representations of sets of strings, weighted finite-state automata

(WFSAs; §2.2.1) and weighted context-free grammars (WCFGs; §2.2.2). Both of these

can be generalized to transducers, enabling them to generate weighted relations between

two languages. Finally, using these representations of sets and relations, efficient algo-

30

rithms exist for implementing all the required operations. While both these representa-

tions have been described extensively in previous work (Goodman, 1999; Mohri, 2009), I

define them here as specific instantiations of the more fundamental weighted set algebra

introduced above. That is, this common set of properties emphasizes that these represen-

tations are fungible and, subject to a few restrictions discussed below (§2.2.3), either of

them can be used when weighted sets and relations are required.

2.2.1 Weighted finite-state automata and transducers

Definition 10. A = 〈Σ,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉 is a weighted finite-state automaton over

semiring K if Σ is a finite input alphabet; Q is a finite set of states; I ⊆ Q is the weighted

set of initial states with weight function λ : I→ K; F ⊆ Q is the weighted set of final or

accepting states with weight function ρ : F→K; and E ⊆Q× (Σ∪{ε})×Q with weight

function w : E→K is a weighted (finite) set of transitions or edges.8

For an edge (transition) e∈E, i[e] denotes its label (in Σ), p[e] its previous state (in Q), n[e]

its next state (in Q), and w[e] its weight (in K). For any state q∈Q, E[q] denotes the set of

transitions leaving q, that is the set of transitions where {e ∈ E : p[e] = q} and which may

be /0. π= 〈e1,e2, . . . ,e`〉 ∈E∗ is a path iff n[ei−1] = p[ei] for i∈ [2, `]. The functions p, n, i,

and w can be extended from edges to paths as follows: p[π] = p[e1], n[π] = n[e`], i[π] is the

concatenation of labels i[e1]i[e2] · · · i[e`], and w[π] =
⊗`

i=1 w[ei]. P(q,r) denotes the set of

paths from q∈Q to r∈Q. P(q,x,r)= {π∈P(q,r) : i[π] = x}where x∈Σ∗. This definition

is generalized to sets Q′ ⊆ Q and R⊆ Q as follows: P(Q′,x,R) =
⋃

q∈Q′∧r∈R P(q,x,r).

8This definition of a WFSA is a slightly modified version of the definition given by Mohri (2009) since
it makes use of weighted sets as defined in §2.1.2.

31

A

B

C

a b

b

c

0.5

1.0
0.4

0.6

0.5 b

 λ(A) = 0.2
 λ(B) = 0.8
 ρ(C) = 1.0

Weight Functions

Figure 2.2: A graphical representation of a weighted finite-state automaton.

A weighted automaton A assigns a weight (in K) to every string x ∈ Σ∗ as follows:

u(x) =

0 P(I,x,F) = /0

⊕
π∈P(I,x,F)λ(p[π])⊗w[π]⊗ρ(n[π]) otherwise

(2.2)

Let L(A)⊆ Σ∗ denote the set of strings accepted by A, that is L(A) = {x∈ Σ∗ : P(I,x,F) 6=

/0}. A weighted finite-state automaton A therefore represents a weighted set 〈L(A),u〉 over

semiring K with u defined as in Equation 2.2.

WFSAs are often represented and illustrated as directed graphs, with nodes and

edges representing states and transitions, respectively. Figure 2.2 shows an example. In

this case, a bold circle indicates an initial state (with the node label indicating λ(q)) and

a double circle indicates a final state (with the node label indicating ρ(q)).

Definition 11. A weighted finite-state transducer is a 6-tuple 〈Σ,∆,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉.

Σ is the finite input alphabet; ∆ is the finite output alphabet; Q is a finite set of states;

I ⊆ Q is the weighted set of initial states with weight function λ : I → K; F ⊆ Q is

the weighted set (as defined in §2.1.2) of final or accepting states with weight function

ρ : F →K; and E ⊆ Q× (Σ∪{ε})× (∆∪{ε})×Q with weight function w : E →K is a

32

weighted (finite) set of transitions or edges.

A WFST is thus a generalization of a WFSA so that each edge has a label in each of two

vocabularies, Σ and ∆. The notion of paths and the functions p, n, i, and w are defined

as above, and augmented by the function o which maps edge e or path π to its output

symbol (∈ ∆) or sequence of output symbols (∈ ∆∗). Additionally define P(q,x,y,r) =

{π ∈ P(q,r) : i[π] = x∧ o[π] = y} where x ∈ Σ∗ and y ∈ ∆∗, and let P(Q′,x,y,R) be the

generalization to sets of states, as above. A weighted finite-state transducer T assigns a

weight (in K) to every string pair (x,y) ∈ Σ∗×∆∗ as follows:

v(x,y) =

0 P(I,x,y,F) = /0

⊕
π∈P(I,x,y,F)λ(p[π])⊗w[π]⊗ρ(n[π]) otherwise

(2.3)

Letting Rel(T) ⊆ Σ∗×∆∗ denote the set of string pairs accepted by T , that is Rel(T) =

{(x,y) ∈ Σ∗×∆∗ : P(I,x,y,F) 6= /0}. A weighted finite-state transducer T therefore rep-

resents a weighted binary relation 〈Rel(T),v〉 over semiring K with v defined as in Equa-

tion 2.2.

2.2.2 Weighted context-free grammars and weighted synchronous CFGs

Definition 12. A weighted context-free grammar G is a 4-tuple 〈Σ,V,〈S,σ〉,〈R,υ〉〉 over

semiring K where Σ is a finite vocabulary of terminal symbols; V is a finite vocabulary

of non-terminal variables and Σ∩V = /0; 〈S,σ〉 is a weighted set of start symbols where

S⊆V with weight function σ : S→K; and 〈R,υ〉 is the weighted set of rewrite rules which

33

is a weighted binary relation where R⊆V × (V ∪Σ)∗ maps from non-terminal variables

to sequences of terminal and non-terminal symbols with weight function υ : R→K.

For a rewrite rule r ∈R, let LHS(r) refer to the left-hand side (a symbol in V) of the rewrite

rule, and RHS(r) refer to its right-hand side or yield, which is a symbol in (V ∪Σ)∗ and

will write LHS(r)→ RHSi(r). a[r] denotes its arity, which is the number of symbols in

V that are in RHSi(r), and υ[r] is its weight (in K). For strings u,v ∈ (V ∪Σ)∗, u yields

v, iff ∃α→ β ∈ R and u1 ∈ Σ∗, u2 ∈ (V ∪Σ)∗ such that u = u1αu2 and v = u1βu2; this

is written u
α→β⇒ v.9 δ = 〈r1,r2, . . . ,r`〉 ∈ R∗ is a derivation iff LHS(r1)

r1⇒ (V ∪Σ)∗
r2⇒

·· · r`⇒ Σ∗, which may be written LHS(r1)
δ⇒ Σ∗. The functions LHS, RHSi, and υ can be

extended to a derivation δ, where LHS(δ) = LHS(r1), RHSi(δ) =
(

LHS(r1)
δ⇒ Σ∗

)
, and

υ[δ] =
⊗`

i=1 υ[ri], with D(q) where q ∈ V denotes the set of derivations rooted at non-

terminal q, that is {δ ∈ R∗ : LHS(δ) = q}. Let D(q,x) where q ∈ V and x ∈ Σ∗ represent

{δ∈D(q) : RHSi(δ) = x}. Finally, D is generalized to support sets of non-terminals Q⊆V

as follows: D(Q,x) =
⋃

q∈Q D(q,x). A weighted context-free grammar G thus assigns a

weight (in K) to every string x ∈ Σ∗ as follows:

w(x) =

0 D(S,x) = /0

⊕
δ∈D(S,x)σ(LHS[δ])⊗υ[δ] otherwise

(2.4)

Let L(G)⊆ Σ∗ denote the set of strings generated by G, that is L(G) = {x ∈ Σ∗ : D(S,x) 6=

/0}. A weighted context-free grammar G therefore represents a weighted set 〈L(G),w〉

over semiring K with w defined as in Equation 2.4.

9Rule application is defined always to apply to the left-most non-terminal in a sequence. This ensures
that unique derivations correspond to unique trees.

34

The structure of context-free grammars can be understood as a generalization of

weighted finite-state automata, and understanding the particulars of this relationship can

be illuminating. The non-terminal vocabulary V plays a similar role as the state set Q

in a WFSA. Rewrite rules R play a similar role to an the transition set E, in fact, LHS[r]

and n[e] can be seen as equivalent. The set of final states F in an FSA is equivalent to

the starting non-terminals S in a CFG.10 Derivations and paths represent similar concepts.

The set of derivations D(q,x) starting a non-terminal q and yielding x∈ Σ∗ is equivalent to

the set of paths P(q,x,F) starting in state q, yielding x, and ending in any final state. This

similarity helps show that any WFST can be trivially encoded as a WCFG, corresponding

to the well-known result that context-free languages are a proper superset of the regular

languages. Briefly, states in the WFSA become non-terminals in the WCFG, a transition

e = 〈q,x,r〉 becomes a rewrite rule r→ qx, final states in the WFSA become start states in

the WCFG, and initial states become epsilon rewrite rules.11 Figure 2.3 shows the WFSA

from Figure 2.2 encoded as a WCFG. Further note that the number of symbols |G| in

the equivalent WCFG, G, is in O(|A|) where |A| is the number of symbols in the finite

automaton A.

Definition 13. A weighted synchronous context-free grammar12 is defined to be a 6-tuple

10Most definitions of context-free grammars require that S is a single non-terminal symbol in V , not a
subset of non-terminals. I have used a more general definition to emphasize the similarities to FSAs (where
there may be many final states); however, this change is merely a notational convenience, it does not alter
the generative capacity of the CFG.

11This is only one of many possible encodings of a WFSA in a WCFG. For an unweighted encoding,
see, for example, Lewis and Papadimitriou (1981).

12Non-weighted synchronous context-free grammars were introduced by Lewis and Stearns (1968). In
addition to introducing weights, the definition given here makes use of indexed gaps, which were not part
of the original definition of SCFGs, but which simplify the statement of several algorithms and are useful
in system implementation. Using indexed gaps (instead of the original bijective correspondence between
input and output non-terminals) does not alter the expressivity of the formalism.

35

Σ = {a,b,c} V = {A,B,C} S = {C} σ(C) = 1.0

R = { A 1.0→ C a,

B 0.6→ A a,

B 0.4→ A c,

B 0.5→ B b,

C 0.5→ B b,

A 0.2→ ε,

B 0.8→ ε }

Figure 2.3: Encoding the WFSA in Figure 2.2 as a weighted context-free grammar. Note
that the start symbol is C.

〈Σ,∆,V,〈S,σ〉,〈R,υ〉〉 over semiring K where Σ is a finite vocabulary of terminal symbols

in the input language; ∆ is a finite vocabulary of terminal symbols in the output language,

V is a finite vocabulary of non-terminal variables and Σ∩V = ∆∩V = /0; 〈S,σ〉 is a

weighted set of start symbols where S ⊆ V with weight function σ : S→ K; and 〈R,υ〉

is the weighted set of input and output rewrite rules which is a weighted relation where

R ⊆ V × (V ∪Σ)∗× ({ 1 , 2 , . . .}∪∆)∗ relates non-terminal variables to a pairs 〈β,γ〉,

where β is a sequence of non-terminals and terminals from the input alphabet; γ is a

sequence of indexed gaps and terminals from the output alphabet; and the pair 〈β,γ〉 is

subject to the gap correspondence constraint.

Definition 14. The gap correspondence constraint states that an input-output string pair

〈β,γ〉 ∈ (V ∪Σ)∗× ({ 1 , 2 , . . .}∪∆)∗ is well-formed iff (1) the number of non-terminal

symbols in β is equal to the number of indexed gaps in γ, and (2) while any non-terminal

may occur any number of times β, each index used must occur only once in γ and the

36

Σ = {a,b,c} ∆ = {x,y,z} V = {A,B,C} S = {C} σ(C) = 1.0

R = { A 0.5→ 〈A a B, 2 1 x〉,

A 0.5→ 〈b C, y 1 〉,

B 0.6→ 〈a b c, z z〉,

B 0.4→ 〈a b c, x y z〉,

C 0.8→ 〈A A, 1 2 〉,

C 0.2→ 〈c,z〉 }

Figure 2.4: Example of a weighted synchronous context-free grammar (WSCFG). Note
that C is the start symbol.

indices used must be contiguous from 1 to a[γ], although they may occur in any order.

Like weighted finite-state transducers, which generalize weighted finite-state automata to

generate (or accept) strings in two languages, weighted synchronous context-free gram-

mars (WSCFGs) generalize WCFGs to generate strings in two languages. Figure 2.4

shows an example WSCFG. The functions defined above for WCFGs continue to apply

to WSCFGs, and I add an additional function over rules RHSo[r] that returns the output

language yield in ({ 1 , 2 , . . .}∪∆)∗.

Let the function Yk : ({ 1 , 2 , . . .}∪∆)∗× ({ 1 , 2 , . . .}∪∆)∗ be defined so as to

add to the index of every gap the integer k, for example Y−1(a b 2) = a b 1 . For

string pairs 〈u,x〉,〈v,y〉 ∈ (V ∪ Σ)∗ × ({ 1 , 2 , . . .} ∪ ∆)∗ with both pairs fulfilling the

gap-correspondence constraint, 〈u,x〉 yields 〈v,y〉 iff ∃α→ 〈β,γ〉 ∈ R and u1 ∈ Σ∗, u2 ∈

(V ∪Σ)∗ and x1,x2 ∈ ({ 2 , 3 . . .}∪∆)∗ such that 〈u,x〉 = 〈u1αu2,x1 1 x2〉 and 〈v,y〉 =

〈u1βu2,Ya[β]−1(x1)γYa[β]−1(x2)〉. δ= 〈r1,r2, . . . ,r`〉 ∈R∗ is a derivation iff 〈LHS(r1), 1 〉 r1⇒

〈(V ∪Σ)∗,({ 1 , 2 , . . .}∪∆)∗〉 r2⇒ ··· r`⇒ 〈Σ∗,∆∗〉, which may be written 〈LHS(r1), 1 〉 δ⇒

37

Yield α→ 〈β,γ〉 Weight
〈C, 1 〉 ⇒ C→ 〈A A, 1 2 〉 1.0×0.8

〈A A, 1 2 〉 ⇒ A→ 〈A a B, 2 1 x〉 ×0.5
〈A a B A, 2 1 x 3 〉 ⇒ A→ 〈b C, y 1 〉 ×0.5

〈b C a B A, 2 y 1 x 3 〉 ⇒ C→ 〈c, z〉 ×0.2
〈b c a B A, 1 y z x 2 〉 ⇒ B→ 〈a b c, x y z〉 ×0.4

〈b c a a b c A, x y z y z x 1 〉 ⇒ A→ 〈b C, y 1 〉 ×0.5
〈b c a a b c b C, x y z y z x y 1 〉 ⇒ C→ 〈c, z〉 ×0.2
〈b c a a b c b c, x y z y z x y z〉 = 0.0016

Figure 2.5: Example synchronous derivation using the WSCFG shown in Figure 2.4.

〈Σ∗,∆∗〉. Figure 2.5 shows an example WSCFG derivation.

As was done in the monolingual case, the functions LHS, RHSi, RHSo and υ can be

extended to a derivation δ. D(q) where q ∈V denotes the set of derivations rooted at non-

terminal q, that is {δ ∈ R∗ : LHS(δ) = q}. Let D(q,x,y), where q ∈V and 〈x,y〉 ∈ Σ∗×∆∗,

represent {δ∈D(q) : RHSi(δ)= x∧RHSo(δ)= y}. Finally, D is generalized to support sets

of non-terminals Q⊆V as follows: D(Q,x,y) =
⋃

q∈Q D(q,x,y). A weighted synchronous

context-free grammar G assigns a weight (in K) to every string pair (x,y) ∈ Σ∗×∆∗ as

follows:

υ(x,y) =

0 D(S,x,y) = /0

⊕
δ∈D(S,x,y)σ(LHS[δ])⊗υ[δ] otherwise

(2.5)

Let Rel(G) ⊆ Σ∗× ∆∗ denote the set of string pairs accepted by G, that is Rel(G) =

{(x,y) ∈ Σ∗ × ∆∗ : D(S,x,y) 6= /0}. A weighted synchronous context-free grammar G

therefore represents a weighted binary relation 〈Rel(G),υ〉 over semiring K with υ de-

fined as in Equation 2.5.

38

2.2.2.1 Hypergraphs as grammars

An ordered, directed hypergraph (Gallo et al., 1993; Huang, 2008; Huang and Chiang,

2005) can be used to represent an arbitrary WSCFG in a manner similar to the graphical

representation of an FSA described above. An ordered hypergraph generalizes the con-

cept of a directed graph to include edges with a tail represented as a vector comprising

zero or more nodes. While some definitions of hypergraphs define the tail nodes to be

an unordered set, to ensure a complete isomorphism between hypergraphs and WSCFGs,

the same node must be able to appear represented multiple times in the tail of the edge.

Furthermore, the order of the nodes in the tail matter; therefore, I define the tail nodes

in terms of a vector. Figure 2.6 shows the representation of the WSCFG from Figure 2.4

encoded as a hypergraph (for simplicity, the rule weights and start symbol weights are not

shown). Briefly, non-terminal symbols become nodes, rewrite rules become edges (with

non-terminal variables corresponding to tails), and the start symbols become goal nodes

(indicated with a double circle).

While prior work has tended to focus on hypergraphs as encodings for (typically

non-recursive) parse forests—themselves a kind a CFG (§2.3.1)—it should be empha-

sized that hypergraphs are a means of representing any arbitrary WCFG or WSCFG.

Furthermore, thinking of a WSCFG as a hypergraph emphasizes the similarity to WFSTs

(which can be represented as convention graphs). When I discuss inference algorithms

(§2.4), I will rely on a common hypergraph representation of both WSCFGs and WFSTs

to express several algorithms that can apply to both classes of objects without any special

handling.

39

C

A B

a
b

c
: z

 z

a b c : x y z
 a : x 2 11 2

1 2

b
 :

 y
1

1

c : z1 2 1 2:

1

2

Figure 2.6: The SCFG from Figure 2.4 represented as a hypergraph (note: weights are
not shown).

2.2.2.2 Pushdown automata and transducers

The definitions of WCFGs and WSCFGs derive from constructions from formal language

theory, whereas those of WFSAs and WFSTs are based on automata theory.13 To a certain

extent, this discrepancy is a historical accident: algorithms for manipulating regular lan-

guages and transducers have been developed using the mathematics of automata theory,

whereas the manipulation of context-free languages has tended to favor representation

in terms of grammars. But, since I am attempting to define representations of sets and

transducers so as to emphasize commonalities whenever possible, it is reasonable to ask

whether there are automata that would be a more appropriate formal object with which to

describe (weighted) context-free languages and transducers.

Of course, there are automata theoretic objects that represent context-free lan-

guages: pushdown automata (PDAs), which have been generalized to pushdown trans-

ducers (PDTs). Why not use weighted PDAs and PDTs instead of CFGs and SCFGs?

13I thank Michael Riley for bringing these issues to my attention.

40

Although the argument that CFGs are more familiar is compelling, there is a more basic

reason: there is no equivalent PDT for general SCFGs (Aho and Ullman, 1972). PDTs

can only represent an SCFG when the gap indices in the output labels occur in strictly in-

creasing order (Ibid.; see Lemma 3.2). In other words, they cannot reorder non-terminals

during translation. Since the ability to explore a large number of reorderings in polyno-

mial time is precisely what makes SCFGs so compelling in applications, I will not make

further use of PDTs.14

2.2.3 Selecting a representation: finite-state or context-free?

In the previous section, I gave examples of four structures for representing weights sets

and relations of possibly infinite size using a finite number of symbols: WFSAs and WF-

STs, which are finite-state, and WCFGs and WSCFGs, which are context-free. Since

context-free languages and relations are a strict superset of the regular languages and

relations, and the former can express the same objects with grammars of approximately

equal complexity (in terms of the number of symbols), context-free representations would

seem preferable, if for no other reason than because they provide more powerful repre-

sentations.

However, it must first be established to what extent these automata support the oper-

ations introduced in §2.1.3, since it is not sufficient merely to represent sets and relations.

Of particular interest is the composition operation, since it is with this that inputs are trans-

duced to outputs. Since composition implicitly computes the intersection of the output

14Aho and Ullman (1973) do sketch the possibility an automaton, which they call a pushdown proces-
sor, which is capable of representing any SCFG. However, it is not rigorously defined, nor is it clear if
composition operations would be natural to implement against it.

41

Table 2.5: Language closure properties under intersection.

↓ ∩→ FSA CFG
FSA FSA CFG
CFG CFG undecidable

of the left transducer and the input of the right transducer, I start with a discussion of the

closure properties of intersection. Table 2.5 summarizes the closure properties for inter-

section of FSAs and CFGs (Aho and Ullman, 1972). In summary: there are intersection

algorithms for any pair of finite-state and context-free transducers, with the exception of

two context-free transducers, for which intersection is in general undecidable (Hopcroft

and Ullman, 1979). However, if one of the CFGs is non-recursive (which is the case in

many applications), the intersection will result in a new CFG; however, the algorithm is

PSPACE-complete (Nederhof and Satta, 2004). Although Post and Gildea (2008) describe

how this algorithm can be utilized to incorporate a context-free language model into a

context-free translation model, and work on approximate inference algorithms suggests

alternative solutions (Rush et al., 2010), I will leave models requiring the composition of

two context-free structures for future work.

While these language theoretic results are well-known, the implications for organiz-

ing processing models have only been partially explored. That WFSTs are closed under

composition has been exploited to factor problems like translation, speech-recognition,

or joint translation and speech recognition into a cascade of transducers (Kumar et al.,

2006). Recognizing that SCFGs can be composed with any number of FSTs has been

theoretically appreciated (Satta, submitted), but few applications that factor problems into

42

cascades of transducers and include a context-free component have been developed.

2.3 Algorithms for composition of a WFST and a WSCFG

Composition is the fundamental operation in my ambiguity-preserving processing model

(§2.1.5). While composition algorithms for general WFSTs using arbitrary semirings

have been developed and explored in considerable detail (Mohri, 2009), general algo-

rithms that compose a WFST and a WSCFG to produce a new WSCFG have received

less attention.15 In this section, I give a practical composition algorithm that makes very

few assumptions about the structure of its inputs or the semiring used. While this algo-

rithm has a similar structure to Earley’s algorithm for parsing (Earley, 1970) and incor-

porates elements of the FSA-CFG intersection construction first described in Bar-Hillel

et al. (1961), my presentation as a generalized algorithm is novel.

I start by giving Bar-Hillel’s simple but extremely inefficient algorithm for comput-

ing the intersection of a CFG and a FSA. I describe how its efficiency can be improved

using a top-down, left-to-right search while also incorporating weights from an arbitrary

semiring (§2.3.1). I then discuss how the weighted intersection algorithm can be altered so

as to compute the composition of a WFST and a WSCFG (§2.3.2). I conclude by showing

that synchronous parsing (parsing a pair of strings 〈e, f〉 with a WSCFG) can be factored

into two successive WFST-WSCFG composition operations, and I provide experimen-

tal evidence showing that this strategy is far more efficient than specialized synchronous

parsing algorithms that have been proposed previously (§2.3.4).

15The closely related problems of intersection of unweighted FSAs and CFGs (van Noord, 1995), as well
as intersection of probabilistic FSAs and CFGs (Nederhof and Satta, 2003), have, however, been explored
in some detail.

43

2.3.1 Intersection of a WFSA and a WCFG

Bar-Hillel et al. (1961) proposed an intersection algorithm that, given an (unweighted)

FSA, A, and a CFG, G , constructs a new CFG, G∩A, that generates the intersection of the

languages L(A) and L(G), that is, G∩A generates only strings that are also generated by

both A and G . Although this method was originally specified only for unweighted FSAs

and CFGs, Nederhof and Satta (2003) show that there is a straightforward generaliza-

tion to probabilistic FSAs and probabilistic CFGs such that the probabilities assigned by

the two inputs are multiplied in the output PCFG.16 The construction proceeds as follows.

The members of the FSA, Q (states), E (edges), F (final states), and I (initial states) are de-

fined as in §2.2.1, except with weighted sets replaced with conventional unweighted sets.

The rules in G have the form X→ α1 . . .αk, where αi ∈ Σ∪V . For each rule, all symbols

in the grammar (both terminals and non-terminals, left and right sides) become annotated

with pairs of states from the input FSA as follows: Xq0,qk → α1q0,q1α2q1,q2 . . .αkqk−1,qk
,

for all sequences of states q0 . . .qk. Each symbol αiq,r is a non-terminal symbol in the

output grammar. Next, terminal rules xq,r → x (where x is a symbol in Σ) are added if

〈q,x,r〉 ∈ E. Finally, the start states G∩A are the input CFG’s start states annotated with

the pairs 〈q,r〉 ∈ I×F , which ensures that G∩A will only derive strings in L(A).

This is the original Bar-Hillel construction. However, for simplicity, I will make

one minor change. Observe that if a symbol xq,r exists in a rule (after the transformation

just described has been applied), this symbol can be replaced by x if 〈q,x,r〉 ∈ E and

otherwise the rule can be deleted, since any derivation containing this rule will never

be able to rewrite into a string of terminals. Therefore, to summarize the output of the
16The generalization to arbitrary semirings is likewise trivial.

44

modified algorithm: from each input rule from G , zero, one, or many rules are constructed

for the output grammar. These rules have the same length and structure as the rule, in that

terminal symbols are untransformed and non-terminals retain the same ‘type’ in the output

grammar, but are annotated with state pairs from A. I note that, as a result, if a string x∈Σ∗

is derivable by both A and G , then the derivation of x under G∩A (which must exist) will

have the same derivation tree structure as it did under G , only with different node labels.

Although theoretically useful, the Bar-Hillel construction is impractical to use, for

two reasons. Most seriously, there are |Q|n unique sequences of states of length n, so

a single rule with k symbols in its right-hand side in the input grammar is expanded

into |Q|k+1 variants in the output grammar.17 Second, even when G∩A derives only the

empty set, the algorithm simply generates a massive grammar that ultimately produces

no derivations of strings of terminal symbols! However, despite these limitations the Bar-

Hillel construction does provide a crucial insight into the nature of the intersection of

CFGs and FSAs: intersection occurs by mapping rules from the input grammar into one

or more rules in the output grammar with the same length, structure, and terminals, but

with different non-terminals.

To summarize, the Bar-Hillel intersection grammar is not generally as efficient as it

could be since it may contain many rules that are unreachable from the start symbols or

that can never be rewritten into terminal symbols. One would therefore would like to find

an efficient means of gathering only the rules that are ‘useful’ in the intersection grammar,

without exploring the exponential number of transformation possibilities suggested by

17While this combinatorial explosion is actually the correct intersection in rare cases (specifically, when
an FSA is fully connected and every pair of states rewrites with every symbol in Σ), most intersections for
‘real’ automata and grammars are massively more constrained.

45

the Bar-Hillel construction (unless, of course, the intersection grammar requires all these

rules). To do so a strategy of top-down filtering will be used to produce an algorithm

that efficiently computes the intersection of FSA and a CFG. Although the worst case

complexity of the filtered algorithm is the same as of the Bar-Hillel construction, for

many useful restricted classes of CFGs and FSAs, the performance is substantially better.

Since weighted intersection (§2.1.3.2) is the focus here, the algorithm introduced handles

semiring-weighted variants of these operands, that is, WFSAs and WCFGs. This adds

only minimal complexity as the unweighted algorithm can be seen as a special case using

the Boolean semiring.

2.3.1.1 Weighted deductive logic

I will present my efficient top-down WFSA-WCFG intersection algorithm (and the WFST-

WSCFG composition algorithm later) as a weighted deductive proof system (Chiang,

2007; Goodman, 1999; Shieber et al., 1995). I define a space of items paired with weights

from semiring K as follows. Axioms are items that are true automatically (with some

weight), and inference rules have the following form and describe how to create new

items from already existing items (that is, axioms and items created by the application of

inference rules):

I1 : w1 I2 : w2 · · · Ik : wk

I : w
φ

This states that if items Ii (the antecedents) are true with weights wi, then the I (the

consequent) is true with weight w, if side condition φ is true. When an item can be

derived in multiple ways, its weight is defined to be the sum using the semiring’s ⊕

46

operator. Finally, goals are specified, which are a set of items that are to be proved.

I use weighted logic to construct new grammars, rather than the more conventional

uses discussed in the literature (e.g., to select a best parse or to compute a quantity over

the resulting proof structure, such as an inside score). The programs are assumed to run

exhaustively, terminating when no new items can be derived by applying inference rules.

As a result, termination is not a condition of being able to derive a goal node; however, if

no goal is derived when all inference rules have been expanded, then the algorithm results

in failure. It is therefore possible to give programs that will never terminate; so, for each

algorithm given, I explicitly state the preconditions for successful termination.

Other authors have discussed the realization of logic programs in software in con-

siderable depth. Shieber et al. (1995) provides a detailed discussion for the unweighted

case as it relates to parsing algorithms, and Goodman (1999) and Klein and Manning

(2001) explore this topic particularly with regard to weighted items. Additionally, the

Dyna programming language can directly compile such a formalism into C++ code (Eis-

ner et al., 2005).

2.3.1.2 A top-down, left-to-right intersection algorithm

I now give a more efficient algorithm for computing the intersection of WCFG, G , and

WFSA, A.18 Let x be a free variable that refers to a symbol in Σ; q, r, and s are free

variables ranging over states in Q; X and Y are free variables taking on values in V ; α

and β are strings of terminals and non-terminals (possibly of length zero), that is, they

are elements of (Σ∪V)∗; and u and v are weights in K. Figure 2.7 provides the axioms,

18Grune and Jacobs (2008) sketch a similar algorithm for intersection of unweighted FSAs with CFGs.

47

goals, and inference rules for a top-down intersection algorithm for computing G ∩A.

Items have the form [X→ α •β,q,r], which corresponds to the assertion that there is a

path π from q to r, such that α
∗⇒ i[π]. The inference rules are quite similar to those found

in Earley’s algorithm.

For clarity, I remark on the differences between this algorithm and Earley’s, as well

as the differences to other well-known presentations of weighted logic programming (Chi-

ang, 2007; Eisner et al., 2005; Goodman, 1999). Most importantly from the perspective

of logic programming, the weights of the items in this logic program are defined so as to

compute the local weight of the resulting intersection rules in the intersection grammar.

This is an important difference compared to other presentations of weighted parsing, for

example the standard presentations of the INSIDE algorithm using weighted deductive

logic, which define the weight of an item so as to include the weight of all its antecedents

so that when the goal item is derived, it represents the total weight of the set defined by the

intersection grammar. Thus, COMPLETE and ACCEPT do not incorporate the weights of

the completed item that triggered their traversal (and annotation) of a non-terminal sym-

bol, just as the weight associated with an item generated by PREDICT is just the weight

from the grammar and does not include the score of the trigger item. The reason for this

is that most presentations of weighted parsing conflate two computations that I prefer to

treat as distinct: computation of the weighted intersection grammar and inference over

the weighted set defined by this grammar. Inference is discussed below (§2.4).

Since this algorithm is a ‘parser’ for WFSA input (rather than for unambiguous

string input, which is the input assumed by conventional parsers) and since this WFSA

may contain ε-transitions, the Earley SCAN operation must be split into two different

48

Start / end conditions:

Axioms:

[S′→•X,q,q] : λ(q)⊗σ(X)
(q ∈ I)∧ (X ∈ S)

Goals:
[S′→ X•,q,r] (q ∈ I)∧ (r ∈ F)∧ (X ∈ S)

Inference rules:

PREDICT

[X→ α•Yβ,q,r] : u
[Y→•γ,r,r] : v

Y v→ γ ∈ R

SCAN-Σ
[X→ α• xβ,q,s] : u

[X→ αx•β,q,r] : u⊗w(s,x,r)
〈s,x,r〉 ∈ E

SCAN-ε
[X→ α•β,q,s] : u

[X→ α•β,q,r] : u⊗w(s,ε,r)
〈s,ε,r〉 ∈ E

ε-RULE

[X→•ε,q,r] : u
[X→ ε•,q,r] : u

COMPLETE

[X→ α•Yβ,q,s] : u [Y→ γ•,s,r] : v
[X→ αYs,r •β,q,r] : u

X 6= S′

ACCEPT

[S′→•X,q,q] : u [X→ γ•,q,r] : v
[S′→ Xq,r•,q,r] : u⊗ρ(r)

r ∈ F

Figure 2.7: Weighted logic program for computing the intersection of a WCFG, G =
〈Σ,V,〈S,σ〉,〈R,υ〉〉, and a WFST, A = 〈Σ,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉.

49

cases: one that handles transitions with labels from Σ and one that handles ε-transitions.

Second, the ACCEPT rule is necessary to incorporate accept weights ρ. Third, the COM-

PLETE and ACCEPT rules annotate the non-terminal symbols they traverse with the start-

ing and ending states of the FSA used to traverse the completed item in the antecedent

(for example, in COMPLETE, the symbol Y in the right-hand side of the X rule in the an-

tecedent becomes Ys,r in the consequent).19 Once the space of items has been generated

by repeated application of the inference rules, the intersection of G and A is encoded in

the item chart, which can then trivially be turned back into WCFG rules of the proper

form.

To illustrate the algorithm, Figure 2.9 shows an example deduction using the weighted

logic program in Figure 2.7 to compute the intersection of the WCFG and a WFSA given

in Figure 2.8. I now turn to an algorithm for converting items back into WCFG rules,

thereby completing the construction of G∩A with the top-down algorithm.

2.3.1.3 Converting the item chart into G∩A

The items generated by running the logic program in Figure 2.7 on G and A can now be

re-encoded into a well-formed WCFG G∩A = 〈Σ,V∩A,〈S∩A,σ〉,〈R∩A,υ〉〉. Items where

the • has reached the right edge of the rule (sometimes called passive edges or passive

items) are transformed into rules in R∩A; all other items are discarded. The existence of

any item of the form [X→ α•,q,r] : u where X∈ V indicates that R∩A should contain

the rule Xq,r → α with weight u. ACCEPT items with weight v indicate that the single

19Non-terminal annotation by COMPLETE does not change the result computed by the algorithm; how-
ever, in certain ambiguous cases, it will result in more items than the non-annotated grammar would have
made use of.

50

Σ = {John,Mary, left, thought,saw} V = {S,NP,VP} S = {S} σ(S) = 1.0

R = { S 1.0→ NP VP,

NP 0.5→ John,

NP 0.5→ Mary,

VP 0.5→ saw NP,

VP 0.4→ left,

VP 0.1→ thought S }

51 2 3 4

John thought Mary left

 λ(1) = 0.4
 λ(3) = 0.2
 ρ(5) = 1.0

Weight Functions

1.0 2.0 1.0 1.0

Figure 2.8: A WCFG representing a weighted set of infinite size (above) and a WFSA
representing the finite weighted set {John thought Mary left : 0.8,Mary left : 0.2} over
the probability semiring (below).

(annotated) non-terminal is a start symbol S∩A, with weight v. To illustrate, the item chart

in Figure 2.9 converts into the WCFG in Figure 2.10.

Note several things about the example. First, G∩A describes exactly the weighted

set {John thought Mary left : 0.008,Mary left : 0.04}. That these weights are correct can

easily be verified by looking at the weights of the derivations associated with them in

the WFSA (0.8,0.2) and the WCFG (0.01,0.2) from which the weighted intersection

grammar was derived, and multiplying them. Second, the intersection grammar has the

structure of a context-free grammar, but it defines a finite language. As such, the weighted

51

1 [S′→•S,1,1] : 0.4 AXIOM

2 [S′→•S,3,3] : 0.2 AXIOM

3 [S→•NP VP,1,1] : 1.0 PREDICT from 1
4 [S→•NP VP,3,3] : 1.0 PREDICT from 2
5 [NP→•John,1,1] : 0.5 PREDICT from 3
6 [NP→•Mary,1,1] : 0.5 PREDICT from 3
7 [NP→•John,3,3] : 0.5 PREDICT from 4
8 [NP→•Mary,3,3] : 0.5 PREDICT from 4
9 [NP→ John•,1,2] : 0.5×1.0 SCAN-Σ from 5

10 [NP→Mary•,3,4] : 0.5×1.0 SCAN-Σ from 8
11 [S→ NP1,2 •VP,1,2] : 1.0 COMPLETE from 3 and 9
12 [S→ NP3,4 •VP,3,4] : 1.0 COMPLETE from 4 and 10
13 [VP→•saw NP,2,2] : 0.5 PREDICT from 11
14 [VP→•left,2,2] : 0.4 PREDICT from 11
15 [VP→•thought S,2,2] : 0.1 PREDICT from 11
16 [VP→•saw NP,4,4] : 0.5 PREDICT from 12
17 [VP→•left,4,4] : 0.4 PREDICT from 12
18 [VP→•thought S,4,4] : 0.1 PREDICT from 12
19 [VP→ thought •S,2,3] : 0.1×2.0 SCAN-Σ from 15
20 [VP→ left•,4,5] : 0.4×1.0 SCAN-Σ from 17
21 [S→•NP VP,3,3] : 1.0 PREDICT from 19 (duplicate of 4)
22 [S→ NP3,4 VP4,5•,3,5] : 1.0 COMPLETE from 12 and 20
23 [VP→ thought S3,5•,2,5] : 0.2 COMPLETE from 19 and 22
24 [S′→ S3,5•,3,5] : 0.2×1.0 ACCEPT from 2 and 22 (goal)
25 [S→ NP1,2 VP2,5•,1,5] : 1.0 COMPLETE from 11 and 23
26 [S′→ S1,5•,1,5] : 0.4×1.0 ACCEPT from 1 and 25 (goal)

Figure 2.9: Item chart produced when computing the intersection of the WCFG and the
WFSA from Figure 2.8 using the top-down filtering program shown in Figure 2.7.

set can be exactly expressed by a WFSA.

2.3.1.4 Alternative forms of G∩A

So far, two ways of deriving G∩A have been considered: the modified Bar-Hillel con-

struction and the top-down intersection algorithm. While the Bar-Hillel construction may

include many unreachable rules, it otherwise produces the exact same set of ‘good’ rules

as the top-down algorithm. However, this is not the only possible intersection grammar

52

Σ∩A = Σ V∩A = {S1,5,S2,5,NP1,2,NP3,4,VP2,5,VP4,5} S∩A = {S1,5,S3,5}

σ(S1,5) = 0.4 σ(S3,5) = 0.2

R = { NP1,2
0.5→ John,

NP3,4
0.5→ Mary,

VP4,5
0.4→ left,

S3,5
1.0→ NP3,4 VP4,5,

VP2,5
0.2→ thought S3,5,

S1,5
1.0→ NP1,2 VP2,5 }

Figure 2.10: Converting the item chart from Figure 2.9 into the intersection grammar
WCFG G∩A.

that generates L(G)∩L(A). To see one possible alternative, observe that, like Earley’s al-

gorithm, the top-down algorithm can be understood to perform an on-the-fly binarization

of G . The COMPLETE rule corresponds to the binary combination of two non-terminals,

and the SCAN rule combines a terminal symbol with a non-terminal; both productions

result in a non-terminal symbol (corresponding to the consequent item). Thus, another

strategy for inferring the intersection grammar is to convert the structure of the item chart

directly into a grammar.20 Unlike the Bar-Hillel construction and the top-down algorithm

where the chart items are converted using specialized rules, the derivations in this alter-

native intersection grammar will generally have a different structure than derivations of

the same string in G .

While implicit binarization is a useful strategy for parsing, the (binary) item chart

20In fact, Nederhof (2003) points out that any derivation encoded as a weighted deduction can be repre-
sented as a weakly equivalent CFG—even those corresponding to grammar formalisms more powerful than
CFGs, such as tree adjoining grammars (Vijay-Shanker and Weir, 1993), combinatorial categorial gram-
mars (Steedman, 2000), and range concatenation grammars (Boullier, 2000). However, the size of these
weakly equivalent grammars may be substantially larger than the more powerful source grammar.

53

structure will not always be useful for computing G∩A since it will not always be mean-

ingful in the context of SCFGs, where there may be no binary equivalent of a higher order

SCFG (Wu, 1997). Fortunately, by using the top-down intersection algorithm, where an-

notated non-terminals are used to reconstruct intersection grammar rules, binarization can

be used during intersection with one language at a time without sacrificing structure of

the original grammar, enabling this algorithm to be used with SCFGs.

2.3.1.5 Remarks on the relationship between parsing and intersection

As was already mentioned, the top-down WFSA/WCFG intersection algorithm of §2.3.1.2

and Earley’s parsing algorithm are closely related.21 Although the Bar-Hillel construc-

tion has been known since the early 1960’s and context-free parsing algorithms for at

least as long, an appreciation of the relationship between parsing and intersection has

been slower to develop, having become appreciated mostly in the last 20 years (Grune

and Jacobs, 2008). I therefore briefly remark on the relationship between parsing and in-

tersection. For this discussion, note that an input sentence to a parser can be understood to

be a simple linear-chain FSA, with states corresponding to the positions between words,

and with one state (the initial state) before the first word and one after the final word (the

final state).

Intuitively, parsing is the problem of returning a representation of all parse struc-

tures compatible with an input sentence and input grammar. Rather than committing to

any particular output representation when discussing parsers in general, Lee (2002) pro-

21Earley’s algorithm can be understood as a non-probabilistic variant of the algorithm that applies only
to restricted kinds of FSAs and operates with a specific control strategy.

54

poses that a parser must only produce an oracle that can be queried (in constant time)

to ask if some span [i, j] in the input sentence is derivable, in the context of the full

sentence, by some non-terminal in the input grammar.22 Under this definition, the in-

tersection grammar G∩A generated by the top-down algorithm is itself such an oracle.23

Testing for the existence of the non-terminal Xi, j in V∩A is equivalent to querying the or-

acle to see whether X derives wi··· j. Additionally, the right-hand sides of the rules that

this non-terminal rewrites as function like backpointers in many traditional formulations

of parsers.

2.3.2 From intersection to composition

The previous section described how to compute the weighted intersection of an arbitrary

WCFG and WFSA, resulting in a new WCFG. With minor variations the same algorithm

can be used to compute the composition of a WSCFG and a WFST, resulting in a new

WSCFG. Recall that weighted composition (§2.1.3.4) is a binary operation over weighted

relations 〈R,u〉 and 〈S,v〉with R⊆ Σ∗×∆∗, and I assume S⊆ ∆∗×Ω∗. I only consider the

case where the left relation is represented as a WFST and the right relation is a WSCFG.

If the reverse is required (i.e., left relation is a WSCFG and right relation is a WFST), the

inversion theorem (§2.1.3.5) can be utilized to compute the composition.

22The requirements for the information provided by the oracle are actually a bit more complicated. A
more detailed discussion is omitted since they are not material to the point being made. For more details,
consult Lee (2002).

23To be a proper oracle, it must be possible to query the existence of any non-terminal in V∩A in constant
time.

55

2.3.2.1 A top-down, left-to-right composition algorithm

Let T be a WFST 〈Σ,∆,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉 that represents 〈Rel(T),u〉 and let G be a

WSCFG 〈∆,Ω,V,〈S,σ〉,〈R,υ〉〉 that represents 〈Rel(G),v〉 over semiring K. The compo-

sition WSCFG G◦T = 〈Σ,Ω,V◦T ,〈S◦T ,σ◦T 〉,〈R◦T ,υ◦T 〉〉 must be computed. Intuitively,

composition can be carried out by treating the output side of T as a WFSA and running

the intersection algorithm on the WCFG that is defined by the input side of G . However,

the resulting composition grammar G◦T must consist of rules that map from strings in

Σ∗ to strings in Ω∗. Therefore, in addition to non-terminal annotation introduced by the

COMPLETE and ACCEPT rules in the intersection algorithm, the composition algorithm

must transform terminal symbols during the SCAN operations. Figure 2.11 shows the

altered algorithm. Most of the symbols retain the same meanings they had in the intersec-

tion (e.g., x is a free variable over symbols in Σ); however, there are a number of changes.

Briefly, y is a free variable over symbols in the output alphabet, ∆; ζ and ξ are strings in

({ 1 , 2 , 3 , . . .}∪Ω)∗. Because symbols in ∆ are transformed (by the FST) into symbols

in Σ, α is a string in (Σ∪V◦T)∗ but β is a string in (∆∪V)∗.

This composition algorithm terminates in the vast majority of cases. However, the

presence of ε-rules on the output side of T can generate an unbounded chain of infer-

ences, causing it to never halt. This occurs precisely in the case where P(q,ΣΣ∗,ε,q) 6= /0

for any state q ∈ Q (refer to §2.2.1 for the definition of P). Fortunately, the grammars

and transducers that are considered for the remainder of the dissertation will not contain

any such ε-cycles. This problem is therefore avoided by stipulation, and its proper resolu-

tion relegated to future work.24 Furthermore, by relying on this stipulation, the structural
24Eisner (2000) proposes an algorithm for detecting such cycles that would be one possibility for dealing

56

Start / end conditions:

Axioms:

[S′→ 〈•X, 1 〉,q,q] : λ(q)⊗σ(X)
(q ∈ I)∧ (X ∈ S)

Goals:

[S′→ 〈X•, 1 〉,q,r] (q ∈ I)∧ (r ∈ F)∧ (X ∈ S)

Inference rules:

PREDICT

[X→ 〈α•Yβ,ζ〉,q,r] : u
[Y→ 〈•γ,ξ〉,r,r] : v

Y v→ 〈γ,ξ〉 ∈ R

SCAN-Σ : ∆

[X→ 〈α• yβ,ζ〉,q,s] : u
[X→ 〈αx•β,ζ〉,q,r] : u⊗w(s,x,y,r)

〈s,x,y,r〉 ∈ E

SCAN-ε : ∆

[X→ 〈α• yβ,ζ〉,q,s] : u
[X→ 〈α•β,ζ〉,q,r] : u⊗w(s,ε,y,r)

〈s,ε,y,r〉 ∈ E

SCAN-Σ : ε (naive)

[X→ 〈α•β,ζ〉,q,s] : u
[X→ 〈αx•β,ζ〉,q,r] : u⊗w(s,x,ε,r)

〈s,x,ε,r〉 ∈ E

ε-RULE

[X→ 〈•ε,Ω∗〉,q,r] : u
[X→ 〈ε•,Ω∗〉,q,r] : u

COMPLETE

[X→ 〈α•Yβ,ζ〉,q,s] : u [Y→ 〈γ•,ξ〉,s,r] : v
[X→ 〈αYs,r •β,ζ〉,q,r] : u

X 6= S′

ACCEPT

[S′→ 〈•X, 1 〉,q,q] : u [X→ 〈γ•,ζ〉,q,r] : v
[S′→ 〈Xq,r•, 1 〉,q,r] : u⊗ρ(r)

r ∈ F

Figure 2.11: Weighted logic program for computing the composition of a WFST T =
〈Σ,∆,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉, and WSCFG G = 〈∆,Ω,V,〈S,σ〉,〈R,υ〉〉.

57

isomorphism that is found between the input and output grammars in intersection holds

for the outputs of composition as well (that is, G and G◦T have the same basic structure,

in terms of number and orientation of non-terminal symbols). However, the proper so-

lution to the ε-cycle problem requires inserting auxiliary non-terminal symbols in G◦T

that have no correspondence in the input rules, thus breaking this isomorphic structural

relationship.25 All other ε’s are handled properly by the algorithm.

2.3.2.2 A bottom-up composition algorithm

The algorithm presented in the previous section makes few assumptions about the input,

making it quite general and potentially useful for many applications. However, it can

be challenging to implement, since efficiency demands creating several indices (for ex-

ample, to efficiently retrieve the set of items that must be completed after the • reaches

the right edge of the rule), managing a queue of items to process, and handing multiple

derivations of the same items properly. However, when the grammar G is ε-free on the

input side of its rules, and where T is acyclic (and therefore defines a finite language), a

simpler bottom-up algorithm can be utilized. These conditions are met in many situations

in machine translation; for example, where G is a hierarchical phrase-based translation

grammar (§3.1.2.2) and T is a sentence or non-recursive WFST. Figure 2.12 gives the

weighted logic program. Note that this is similar to the CKY+ algorithm used in SCFG-

based translation (Chiang, 2007), but it has been adapted to annotate non-terminals and

transduce terminals to create a composition forest. The bottom-up algorithm is quite sim-

with this issue.
25It is not difficult to prove that the excluded composition cases involving ε-cycles require the addition

of new non-terminals to the composition grammar.

58

ilar to the top-down one, only it lacks a PREDICT rule and the axioms are different. A

primary advantage of the bottom-up algorithm is its simplicity: it can be implemented

by looping over all states q, r, and s in topological order and building items that span

progressively longer distances in the state space.26 Keeping track of an agenda of items

is not required (as it is with the top-down algorithm).

The process of converting the resulting items from the bottom-up chart is similar

to the top-down approach.27 The altered conversion procedure is as follows: for each

passive item of the form [X→〈α•,ζ〉,q,r] : w, add Xq,r to V◦T . If the item is a goal item,

add Xq,r to S◦T with weight σ(X)⊗λ(q)⊗ρ(r). Always, add the rule Xq,r → 〈α,ζ〉 to

R◦T with weight w.

2.3.3 A note on terminology: sets vs. relations

In the remainder of the thesis, I make use of the convention to represent weighted sets

with the appropriate identity relation. That is, WFSAs will be represented using identity-

transducer WFSTs, and WCFGs with identity-transducer WSCFGs. This convention has

been widely used among authors who work with WFSTs (see e.g., Allauzen et al. (2007)),

if for no other reason than implementations need only have a single representation. It also

means that which is logically intersection is implemented with composition. However,

it may at first seem unusual to readers unfamiliar with this convention when sets of sen-

tences are described as being encoded by a WFST or WSCFG. However, this is quite

26Because T is acyclic by stipulation, a topological ordering of the states is guaranteed to exist.
27An alternative conversion strategy is necessary since the bottom-up logic program incorporates neither

the σ and λ start weights, nor the ρ accept weights, and there are not separate ACCEPT items. Fortunately,
by adapting the item-to-rule conversion to account for the missing ACCEPT items, the missing weights can
easily be incorporated.

59

Start / end conditions:

Axioms:

[X→ 〈•β,ζ〉,q,q] : u
(q ∈ Q)∧ (X u→ 〈β,ζ〉 ∈ R)

Goals:
[X→ 〈α•,ζ〉,q,r] (q ∈ I)∧ (r ∈ F)∧ (X ∈ S)

Inference rules:

SCAN-Σ : ∆

[X→ 〈α• yβ,ζ〉,q,s] : u
[X→ 〈αx•β,ζ〉,q,r] : u⊗w(s,x,y,r)

〈s,x,y,r〉 ∈ E

SCAN-ε : ∆

[X→ 〈α• yβ,ζ〉,q,s] : u
[X→ 〈α•β,ζ〉,q,r] : u⊗w(s,ε,y,r)

〈s,ε,y,r〉 ∈ E

SCAN-Σ : ε

[X→ 〈α•β,ζ〉,q,s] : u
[X→ 〈αx•β,ζ〉,q,r] : u⊗w(s,x,ε,r)

〈s,x,ε,r〉 ∈ E

COMPLETE

[X→ 〈α•Yβ,ζ〉,q,s] : u [Y→ 〈γ•,ξ〉,s,r] : v
[X→ 〈αYs,r •β,ζ〉,q,r] : u

X 6= S′

Figure 2.12: Weighted logic program for computing the intersection of a WSCFG,
G = 〈Σ,∆,V,〈S,σ〉,〈R,υ〉〉, and an acyclic WFST, A = 〈∆,Ω,Q,〈I,λ〉,〈F,ρ〉,〈E,w〉〉 us-
ing bottom-up inference.

60

intentional.

2.3.4 Application: Synchronous parsing via weighted composition

In the previous two sections, I described an algorithm for intersection of a WFSA and

WCFG (§2.3.1) which was then extended to compute the composition of a WFST and a

WSCFG (§2.3.2). I now show how the composition algorithm can be used to perform

synchronous parsing, the problem of finding the best derivation (or forest of derivations)

of a source and target sentence pair 〈f,e〉, under a WSCFG, G .28

Solving the synchronous parsing problem is necessary for several applications; for

example, optimizing how well an SCFG translation model fits parallel training data. Wu

(1997) describes a specialized, bottom-up O(n6) synchronous parsing algorithm for ITGs,

a binary SCFG with a restricted form. For general grammars, the situation is even worse:

the problem has been shown to be NP-hard (Melamed, 2004; Satta and Peserico, 2005).

Unfortunately, even if the class of grammars considered is restricted to binary ITGs, the

O(n6) run-time makes large-scale learning applications infeasible. The usual solution is

to use a heuristic search that avoids exploring edges that are likely (but not guaranteed) to

be have a low weight (Haghighi et al., 2009; Zhang et al., 2008).

Here, I derive an alternative synchronous parsing algorithm starting from a con-

ception of parsing with SCFGs as a composition of binary relations. This enables the

synchronous parsing problem to be factored into two successive monolingual parses. My

algorithm runs more efficiently than O(n6) with many grammars (including those that

required using heuristic search with other parsers), making it possible to take advantage

28This section contains work originally published in Dyer (2010).

61

of synchronous parsing without developing search heuristics; and the SCFGs are not re-

quired to be in a normal form, making it possible to easily parse with more complex

SCFG types. I call this algorithm the two-parse algorithm.

Before presenting this algorithm, I review the O(n6) synchronous parser for binary

ITGs.29 Wu (1997) describes a bottom-up synchronous parsing algorithm that can be

understood as a generalization of the CKY monolingual parsing algorithm. CKY de-

fines a table consisting of n2 cells, with each cell corresponding to a span [i, j] in the

input sentence; and the synchronous variant defines a table in 4 dimensions, with cells

corresponding to a source span [s, t] and a target span [u,v]. The bottom of the chart is

initialized first, and pairs of items are combined from bottom to top. Since combining

items from the n4 cells involves considering two split points (one source, one target), it is

not hard to see that this algorithm runs in time O(n6).

2.3.4.1 The two-parse algorithm

Let WFST, F , be the self-transducer which encodes the source sentence f with weight 1.

Figure 2.13 shows an example of self-transducers encoded as WFSTs. Since F contains

no ε’s at all, it is certain that F can be composed with the WSCFG, G , using the com-

position algorithms from the previous section. The result is the composition grammar,

G◦F , which I will now write as F ◦G . While G can generate a potentially infinite set

of strings in the source and target languages, G generates only f in the input language

(albeit with possibly infinitely many derivations), but any number of different strings in

29Generalizing the algorithm to higher rank grammars is possible (Wu, 1997), as is converting a grammar
to a weakly equivalent binary form in some cases (Huang et al., 2009).

62

E4E1 E2 E3

a : a
1.0 1.0 1.0

E
b : b c : c

F
F4F1 F2 F3

x : x
1.0 1.0 1.0

y : y z : z

Figure 2.13: The two WFSTs, E and F , required to compute the synchronous parse of the
pair 〈a b c,x y z〉.

the output language. This structure is commonly referred to as a −LM translation forest

(Chiang, 2007), since it encodes all translation alternatives with weights based only on

the translation model, not a language model.

From here, it is not hard to see that a second composition operation of a self-

transducer WFST, E, that encodes the target string e with the output side of F ◦G will

produce a grammar that derives exactly the sentence pair 〈e, f〉. Therefore F ◦G ◦E en-

codes the synchronous parse forest for 〈e, f〉. Note that in F ◦G ◦E, the non-terminals

consist of a non-terminal symbol from G annotated both with pairs of states from E and

pairs of states from F .

Synchronous parsing of the pair 〈e, f〉 with a grammar G is therefore equivalent to

computing F ◦G ◦E, where E and F are self-transducers representing e and f, respec-

tively. Furthermore, composition is associative, so I can compute this quantity either as

(F ◦G)◦E or F ◦ (G ◦E).

The two-parse algorithm refers to performing a synchronous parse by computing ei-

ther (F ◦G)◦E or F ◦(G ◦E). Each composition operation is carried out using a standard

63

composition algorithm, rather than the more commonly used approach of doing a 3-way

composition directly. In the experiments below, since I use ε-free grammars and acyclic

WFSTs, the bottom-up composition algorithm (§2.3.2.2) may be utilized. Once the first

composition is computed, the resulting WSCFG must be inverted (§2.1.3.5). Since the

composition algorithm used operates more efficiently with a determinized grammar, the

grammar is left-factored during the inversion process as well (Klein and Manning, 2001).

Analysis. The bottom-up composition algorithm runs in O(|G | ·n3) time, where n is the

length of the input being parsed and |G | is a measure of the size of the grammar (Graham

et al., 1980). Since the grammar term is constant for most typical parsing applications, it

is generally not considered carefully; however, in the two-parse algorithm, the size of the

grammar term for the second parse is not |G | but |F ◦G |, which clearly depends on the

size of the input F ; and so understanding the impact of this term is key to understanding

the algorithm’s run-time.

If G is assumed to be an ε-free WSCFG with non-terminals V and maximally two

non-terminals in a rule’s right hand side, and n is the number of states in F (corresponding

to the number of words in the f in a sentence pair 〈e, f〉), then the number of nodes in the

parse forest F ◦G will be O(|V | · n2). This is easy to see since it is known from above

that V◦F consists of symbols from V annotated with pairs of states, and there are n+ 1

states in F . The total number of rules will be O(|V | · n3), which occurs when every new

non-terminal can be derived from all possible binary splits of the span it dominates. This

bound on the number of rules implies that |F ◦G | ∈ O(n3). However, how tight these

bounds are depends on the ambiguity in the grammar with respect to the input: to generate

64

n3 edges, every item in every cell must be derivable by every combination of its subspans.

Most grammars are substantially less ambiguous. Therefore, the worst case run-time of

the two-parse algorithm is O(|V | · n3 · n3 + |G | · n3) = O(|V | · n6), the same as the bound

on the binary ITG algorithm. Note that while the ITG algorithm requires that the SCFGs

be rank-2 and in a normal form, this analysis of the two-parse algorithm analysis holds as

long as the grammars are rank-2 and ε-free. Since many widely used SCFGs meet these

criteria, including hierarchical phrase-based translation grammars (Chiang, 2007), SAMT

grammars (Zollmann and Venugopal, 2006), and phrasal ITGs (Zhang et al., 2008), an

analysis of ε-containing and higher rank grammars is left to future work.

2.3.4.2 Two-parse algorithm experiments

An empirical characterization of the performance of the two-parse algorithm is now pro-

vided by comparing the running time of the two-parse algorithm with that of alternative

synchronous parsing algorithms, on synchronous parsing tasks for two different classes of

SCFGs (each described below). In both experiments, a synchronous context-free gram-

mar, G is constructed from a parallel corpus C using established grammar induction tech-

niques. Then, the sentence pairs 〈fi,ei〉 in the parallel corpus C are iterated over, and two

identity WFSTs, F from fi, and E from ei, are constructed. Both E and F are defined

os as to have a single path with weight 1. The time required to compute the compute

the synchronous parse forest (F ◦G) ◦E using the two-parse algorithm is measured and

compared to that of another standard synchronous parsing algorithm.

65

Phrasal ITGs. In the first experiment, I compare performance of the two-parse algo-

rithm and the O(n6) ITG parsing algorithm on an Arabic-English phrasal ITG alignment

task. The corpus consisted of 120k sentence pairs (3.3M Arabic tokens; 3.6M English

tokens) drawn from the NIST MT evaluation newswire training data. Sentences were fil-

tered to a length of maximally 64 tokens on either side. For G , I used a variant of the

phrasal ITG described by Zhang et al. (2008). The restriction that phrases contain ex-

actly a single alignment point was relaxed, instead the grammar was restricted to contain

all phrases consistent with the word-based alignment up to a maximal phrase size of 5.

This resulted in a synchronous grammar with 2.9M rules. Figure 2.14 plots the average

run-time of the two algorithms as a function of the Arabic sentence length, and Table 2.6

shows the overall average run-times. Both presentations make clear that the two-parse

approach is dramatically more efficient. In total, aligning the 120k sentence pairs in the

corpus completed in less than 4 hours with the two-parse algorithm but required more

than 1 week with the baseline algorithm.30

Table 2.6: Comparison of synchronous parsing algorithms on Arabic-English.

Algorithm avg. run-time (sec)
ITG alignment 6.59

Two-parse algorithm 0.24

“Hiero” grammars. In the second experiment, I evaluate an alternative approach to

computing a synchronous parse forest that is based on cube pruning (Huang and Chiang,
30A note on implementation: the ITG aligner was implemented quite efficiently; it only computed the

probability of the sentence pair using the inside algorithm and did not build a representation of the parse
chart. With the two-parse aligner, the complete item chart was stored during both the first and second
parses. Therefore the implementation was biased in favor of the baseline ITG parsing algorithm.

66

10 20 30 40 50 60
0

20

40

60

ITG algorithm
Two-parse algorithm

Figure 2.14: Average synchronous parser run-time (in seconds per sentence) as a function
of Arabic sentence length (in words).

2007). While more commonly used to integrate a target m-gram LM during decoding,

Blunsom et al. (2008a), who required synchronous parses to discriminatively train an

SCFG translation model, repurposed this algorithm to discard partial derivations during

translation of f if the derivation yielded a target m-gram not found in e (p.c.). I replicated

their BTEC Chinese-English system and compared the speed of their ‘cube-parsing’ tech-

nique and the two-parse algorithm. The BTEC Chinese-English corpus consists of 44k

parallel sentences (330k Chinese tokens; 360k English tokens). The SCFG was extracted

from a word-aligned corpus, as described in Chiang (2007), and contained 3.1M rules

with RHS’s consisting of a mixture of terminal and non-terminal symbols, up to rank 2.

To the extent possible, the two experiments were carried out using the exact same code

base, which was a C++ implementation of an SCFG-based decoder. Figure 2.15 plots the

average run time as a function of Chinese sentence length, and Table 2.7 compares the

average per sentence synchronous parse time. The BTEC timing plot is less smooth than

the Arabic-English plot for two reasons. First, there are fewer longer sentences in the

BTEC corpus in comparison to the Arabic-English newswire corpus, so the average time

67

10 20 30
0

10

20

30

‘Cube’ parsing
Two-parse algorithm

Figure 2.15: Average synchronous parser run-time (in seconds per sentence) as a function
of Chinese sentence length (in words).

is estimated from a smaller population so there will be some additional variance due to the

smaller sample sizes. But, more significantly, the running time of the cube parsing algo-

rithm depends much more strongly on the contents of the grammar than the ITG parsing

algorithm does (whose run-time is almost wholly determined by the sentence lengths).

Again, the timing differences are striking.

Table 2.7: Comparison of synchronous parsing algorithms on Chinese-English.

Algorithm avg. run-time (sec)
‘Cube’ parsing (Blunsom et al., 2008a) 7.31

Two-parse algorithm 0.20

Discussion of two-parse results. As the results of the two experiments just reported

show, the two-parse strategy clearly outperforms both the ITG parsing algorithm (Wu,

1997), as well as the ‘cube-parsing’ technique for synchronous parsing. The latter result

points to a connection with recent work showing that determinization of edges before LM

integration leads to fewer search errors during decoding (Iglesias et al., 2009). Taken to-

68

gether, this suggests it may be worth rethinking the dominant language model integration

strategy (i.e., cube pruning) that is used in syntactic translation models.

These results are somewhat surprising in light of work showing that 3-way composi-

tion algorithms for FSTs operate far more efficiently than performing successive pairwise

compositions (Allauzen and Mohri, 2009). This is certainly because the 3-way algorithm

used here (the ITG algorithm) does an exhaustive search over all n4 span pairs without

awareness of any top-down constraints. This suggests that faster composition algorithms

that incorporate top-down filtering may still be discovered.

2.4 Inference

So far in this chapter, I have introduced weighted sets, two tractable relations for them

(WFSTs and WSCFGs), and intersection and composition algorithms. I now turn to

two inference problems that will come up repeatedly in the remainder of this disserta-

tion: computing the total weight of all paths in a WFST (or equivalently, derivations

in a WSCFG) and computing marginal transition weights in a WFST (or, equivalently,

marginal rule weights in a WSCFG).31 Before describing algorithms for computing the

total weight and marginal weights, I discuss a common representation for both WFSTs

and WSCFGs which enables a statement of generic algorithms that applies to both classes

of inputs.

Note that the algorithms in this section are specific to weighted sets represented by

31Finding the k-best derivations of a WSCFG or WFST when path weights define a partial ordering is
also a common problem; however, the models considered in later chapters do not require it so I do not
discuss this. For details, the topic has been explored in considerable depth by Huang (2008). Like the
algorithms for computing the total weight and edge marginals, the k-best algorithm operates on a unified
hypergraph representation.

69

WFSTs or WSCFGs, not general weighted sets.

2.4.1 Correspondences between WFSTs and WSCFGs

Table 2.8 summarizes the correspondences between elements of WFSTs (§2.2.1) and el-

ements of WSCFGs (§2.2.2). While these two classes of grammars have different gen-

erative power, the two formalisms are similar enough that a number of algorithms can

be designed so as to apply to objects from both classes without special handling. To do

so, I will assume are represented in as a directed hypergraph, where WFSTs are directed

acyclic graphs, and I will use names in the first column of the table to refer, in a generic

way, to elements of WSCFGs or WFSTs. For example, rather than referring specifically

to transitions (in a WFST) or rewrite rules (in a WSCFG), I will use the term edges which

can refer to both.

This common representation for WFSTs and WSCFGs can be understood as treat-

ing WFSTs as a degenerate form of WSCFG, one where there is always a single non-

terminal on the left edge of every rewrite string. The close relationship between WFSTs

and WSCFGs was noted above (§2.2.2). Furthermore, the correspondence is related to

the fact that the regular languages (which are generated by FSAs) are a proper subset of

the context-free languages (which are generated by CFGs).

2.4.2 Computing the total weight of all derivations

It is often necessary to compute the ⊕-total weight of all derivations in a hypergraph

(WFST or WSCFG), G . For example, computing the maximum weight derivation with

70

Table 2.8: Summary of correspondences between WFSTs (§2.2.1) and WSCFGs (§2.2.2).

symbol WFST WSCFG
Graph. rep. G directed graph B-hypergraph (Gallo et al., 1993)

Node q state non-terminal
Edge e transition rewrite rule

Edge weight w(e) w(e) υ(r)
Edge tail nodes t(e) p(e) RHS non-terminals (0 or more)
Edge head node n(e) n(e) LHS(r)

Edge arity |t(e)| 1 # of non-terminals in r
In-edges B(q) {e : n(e) = q} {r : LHS(r) = q}

Goal qgoal final state start symbol
Source initial state —

Derivation d path (π) derivation
Output yield o(d) o(π) RHSo(d)

Input yield i(d) i(π) RHSi(d)
Total weight wK(G) FORWARD INSIDE

Edge marginal γ(e) FWDBACKWARD INSIDEOUTSIDE

Max derivation dmax(G) shortest path best derivation

the tropical semiring can be used to find the maximum derivation in the semiring, which is

a frequently used decision rule. A naı̈ve approach to computing this quantity would be to

enumerate all derivations in G , compute their weights (which decompose multiplicatively

over the edges), and sum. Unfortunately, G will often contain a number of derivations that

is exponential in its size (there may even be an infinite number of derivations), making

this an intractable proposition.

The INSIDE algorithm, which takes a hypergraph representation, G , of a WFST or

WSCFG and an arbitrary semiring, K, is given in Figure 2.16 and can be used to find the

total weight of a WFST or WSCFG in time and space that is linear in the size of G (mea-

sured by the number of edges and nodes), using dynamic programming. The algorithm

computes a vector weights of paths terminating at successive nodes in the hypergraph rep-

71

1: function INSIDE(G ,K) . G is an acyclic hypergraph and K is a semiring
2: for q in topological order in G do
3: if B(q) = /0 then
4: α(q)← 1 . assume states with no in-edges are axioms
5: else
6: α(q)← 0
7: for all e ∈ B(q) do . all in-coming edges to node q
8: k← w(e)
9: for all r ∈ t(e) do . all tail (previous) nodes of edge e

10: k← k⊗α(r)
11: α(q)← α(q)⊕ k
12: return α

Figure 2.16: The INSIDE algorithm for computing the total weight of a non-recursive
WFST or WSCFG.

resentation of the input, and α(qgoal) is the total weight, the quantity in Equation (2.6).

α(qgoal) =
⊕
d∈G

⊗
e∈d

w(e) (2.6)

The INSIDE algorithm assumes a non-recursive (acyclic) input.32 In this statement of the

algorithm, I further assume that there is only a single goal node qgoal, with accept weight

1. Keep in mind that any hypergraph with multiple goal nodes (or a goal node with a non-

1 weight) can be converted to a such a graph by adding an edge with an ε-label whose

weight is equal to the goal node’s accept weight. The non-recursive assumption that is

made means that the nodes in G can be topologically ordered, meaning that any node q

that directly or indirectly depends on another node r is ordered after r. Dependency is

defined by asserting that the tail nodes of an edge are dependents of the edge’s head node.

32For a discussion of the issues surrounding computing total weights of recursive grammars, which have
an infinite number of derivations, refer to Goodman (1999).

72

2.4.3 Computing marginal edge weights

The marginal weight of an edge e, γ(e), is the ⊕-total weight of all derivations that in-

clude e. Like the total derivation weight computed by the INSIDE algorithm, the marginal

weight of an edge can be computed more efficiently than by enumerating all applicable

derivations using the INSIDEOUTSIDE dynamic programming algorithm that is given in

Figure 2.17.33 In a probabilistic FSA or CFG, under the probability semiring, the edge

marginal is the probability that a particular transition will be taken (or rule will be used).

When using real-valued weights and the tropical semiring, the marginal weight is the

maximum score of all derivations that include e. When using the count semiring, the

marginal weight is the number of derivations that include e.

2.5 Summary

This chapter has set up a general model of language processing in terms of weighted

sets and weighted binary relations. Inputs that are unambiguous can be accounted for in

the model, as well as ones where inputs (and outputs) are inherently ambiguous, which

will be my focus in subsequent chapters. I then described how weighted sets and rela-

tions can be encoded as WFSTs and WSCFGs. Although the operations for manipulating

and combining multiple WFSTs have been well-studied, there is much less relevant re-

search for the problems encountered when combining WFSTs and WSCFGs. I therefore

presented several algorithms for intersection and composition of WFSAs/WFSTs and

33A slightly different formulation of the INSIDEOUTSIDE algorithm is sometimes given, for example by
Li and Eisner (2009). Their formulation is useful when the algorithm is used to compute the product of a
marginal and another function, for example when computing expectations.

73

1: function OUTSIDE(G ,K,α) . α is the result of INSIDE(G ,K)
2: for all q ∈ G do
3: β(q)← 0
4: β(qgoal) = 1
5: for q in reverse topological order in G do
6: for all e ∈ B(q) do . all in-coming edges to node q
7: for all r ∈ t(e) do . all tail (previous) nodes of edge e
8: k← w(e)⊗β(q)
9: for all s ∈ t(e) do . all tail (previous) nodes of edge e, again

10: if r 6= s then
11: k← k⊗α(s) . incorporate inside score
12: β(r)← β(r)⊕ k
13: return β

1: function INSIDEOUTSIDE(G ,K) . compute edge marginals
2: α← INSIDE(G ,K)
3: β← OUTSIDE(G ,K,α)
4: for edge e in G do
5: γ(e)← w(e)⊗β(n(e)) . edge weight and outside score of edge’s head node
6: for all q ∈ t(e) do
7: γ(e)← γ(e)⊗α(q) . inside score of tail nodes
8: return γ . γ(e) is the edge marginal of e

Figure 2.17: The OUTSIDE and INSIDEOUTSIDE algorithms for computing edge
marginals of a non-recursive WFST or WSCFG.

74

WCFGs/WSCFGs. Although these are closely related to previous work in parsing and

formal language theory, this is the first time the weighted intersection and composition

processes have been formalized for general inputs. Finally, I showed that the composi-

tion algorithm leads to an alternative solution to the synchronous parsing problem. For

two common SCFG types, this algorithm turns out to be far more efficient than existing

specialized synchronous parsing algorithms. Algorithms for performing inference over

non-recursive WFSTs and WSCFGs using a common representation of both classes of

structures based on hypergraphs were then reviewed.

75

3 Finite-state representations of ambiguity

One naturally wonders if the problem of translation could conceivably be

treated as a problem in cryptography. When I look at an article in Russian, I

say: ‘This is really written in English, but it has been coded in some strange

symbols. I will now proceed to decode.’

–Warren Weaver (1947)

recognize speech

wreck beacha nice

–Speech Recognition 101

In the following chapters, I focus on the task of statistical machine translation (SMT;

Brown et al. (1993)) to provide various situations at which it is useful to represent am-

biguity of elements rather than single elements.1 Since SMT furnishes most of the tasks

upon which the approach described in the previous chapter is to be evaluated, I begin this

chapter with a brief introduction to machine translation (§3.1). For a more comprehensive

overview, refer to the recent survey by Lopez (2008a) or the textbook by Koehn (2009).

1This chapter contains material originally published in Dyer (2007) and Dyer et al. (2008).

76

Although SMT was originally formulated in terms of concepts from probability and infor-

mation theory, I will recast the problem in terms of the weighted set operations described

in the previous chapter, which subsume and extend the older models.

While much research attempts to improve models of the translation process and

improve the resolution of the ambiguities that are inherent in these models, this chapter

considers the translation problem when the input to the translation component is itself

ambiguous—for example, when the task is to translate the output of a statistical auto-

matic speech recognition (ASR) system. I then show that even in the context of text-

to-text translation, where the identity of the input would seem to be unambiguous, the

techniques of translating a weighted set of inputs can be utilized so as to model decisions

stochastically that would otherwise be made arbitrarily (such as what the optimal segmen-

tation of the input is), leading to major improvements over strong baselines in a variety

of machine translation tasks.

In this chapter, I focus on using WFSTs to represent input alternatives, in particular

I use a restricted class called a word lattice to do so. I then turn to a discussion of the

issues that arise when translating input structured as a WFST (§3.2). A description of

experiments with a number of different kinds of ambiguous inputs follows (§3.3).

Chapter contributions. In the introductory section describing machine translation, I

define a novel semiring, which I name the upper envelope semiring. I show that the hy-

pergraph MERT algorithm described by Kumar et al. (2009) is equivalent to running the

INSIDE algorithm over a hypergraph with this semiring. Although this algorithm is no

more powerful or efficient than the Kumar et al. algorithm, it is expressed in terms of

77

the familiar concepts of semirings and the INSIDE algorithm, which emphasizes its rela-

tionship to other algorithms used in natural language processing that the more specialized

algorithm obscures. In the experimental section, I show that hierarchical phrase-based

translation models can efficiently translate input encoded as a word lattice. I provide ex-

perimental evidence that translation quality (as measured by BLEU) can be improved by

encoding ambiguous alternatives of the input in a word lattice, rather than making a de-

cision about the analysis before translation. In particular, I show that decisions that are

typically made during system development (such as the kind of source language segmen-

tation or amount of morphological simplification) can be treated as a source of ambiguity

and encoded in a lattice, leading to improved translation. These improvements hold for

both finite-state and context-free translation models.

3.1 An introduction to statistical machine translation

Statistical machine translation (SMT) is typically formulated as a statistical inference

problem; however, since more generally weighted (i.e., not probabilistic) models have

become the dominant paradigm in SMT (Och, 2003; Zollmann et al., 2008), I will formu-

late the problem in terms of the weighted set operations defined in the previous chapter.

A general SMT system consists of a weighted transducer G that relates sentences in some

source language (conventionally designated f) to sentences in some target language (con-

ventionally designated e).2 G is called a translation model and assigns weights. I will

assume it is structured either as a WFST (§2.2.1) or WSCFG (§2.2.2). It typically has

2The use of f and e as variable names is the result of the first statistical machine translation experiments
being carried on out the French-English Canadian parliamentary proceedings.

78

three responsibilities: to change the order of the words in the source sentence into the

appropriate target order (if it differs), to translate the words from the source language

into words in the target language, and to assign a weight to each translation hypothesis in

the output set according to how faithful the translation is to the original meaning. After

translation, a target language model E is typically used, which assigns a weight (usually a

log-probability weighted by some factor) to every string in the target language indicating

how fluent and grammatical a translation hypothesis is.

In the standard model, the transducer is applied to an unweighted input set F con-

sisting of a single sentence f in the source language using composition. Therefore, F ◦G

produces a weighted set over outputs in the target language. Whether F ◦G is a WFST or

a WSCFG, I will assume that it defines a finite set of strings, or, equivalently stated, that

its graphical representation is acyclic.3 F ◦G is then rescored by applying the target lan-

guage model E , again with a composition operation, that is F ◦G ◦E . An output from the

system is chosen by applying a decision rule to the target projection, that is (F ◦G ◦E)↓.

I will select dmax, that is, make use of the maximum weight decision rule (§2.1.5.1), to

find the maximum weighted derivation.4

To summarize the introduction to statistical machine translation, I will discuss lan-

guage models (§3.1.1) and two common forms of translation models (§3.1.2): phrase-

based translation models (which make finite-state assumptions) and hierarchical phrase-

based translation models (which are context-free). Then I will discuss model parameteri-

3This assumption holds for the translation models considered here. Some others, for example the IBM
lexical translation models, define output strings of unbounded length by permitting insertions (Brown et al.,
1993).

4The term derivation is used to refer to both paths in a WFST and derivations in a WSCFG. Refer to
§2.4.1 for more information about terminology.

79

zation using linear models (§3.1.3), the optimization of such models using minimum error

training (§3.1.4), and conclude with a discussion of the evaluation of machine translation

(§3.1.5).

3.1.1 Language models

A language model E assigns a score to every string in a language that reflects the string’s

grammaticality and well-formedness. As such, it is just an instance of a weighted set (of

infinite cardinality), and any of the weighted set representations discussed in the previ-

ous chapter may be used to represent it. In this dissertation, I will use n-gram language

models, which assign (log) probabilities to strings of any length using a order-n Markov

assumption (Manning and Schütze, 1999). The Markov assumption states that the prob-

ability of a word in some context depends only on the recent context (where recency is

measured in the number of words). For example, using n = 2, this is:

p(e) = p(e1e2 . . .en)

= p(e1)p(e2|e1)p(e3|e1e2)p(e4|e1e2e3) · · · p(en|e1 . . .en−2en−1)

≈ p(e1)p(e2|e1)p(e3|e1e2)p(e4|e1e2e3) · · · p(en|e1 . . .en−2en−1) ,

= p(e1)p(e2|e1)p(e3|e2)p(e4|e3) · · · p(en|en−1) ,

and for general m,

=
|e|

∏
i=1

p(ei|ei−m+1 . . .ei−1)

The conditional probability distributions that n-gram models are composed of are esti-

80

mated from large corpora of monolingual text.

Because of the linear Markov assumption, language models are equivalent to WF-

SAs (Allauzen et al., 2003). Any n-gram language model can be explicitly encoded as

a WFSA (or equivalently, an identity relation WFST). While a naı̈ve encoding will have

|Σ|n−1 states (each state will correspond to a context of n−1 words and the |Σ| transitions

leaving it will be weighted with the conditional probability of that symbol, given the con-

text implied by the state), it is often possible to have much more compact encodings of

models, even those that make use of back-off smoothing.

Although it is possible to encode a language model as a WFST and use standard

composition algorithms to incorporate the language model, many specialized language

model composition algorithms exist that do not require explicitly instantiating an n-gram

language model as a WFST (Huang and Chiang, 2007; Koehn et al., 2003). In the exper-

iments used in this dissertation, the approximate composition algorithm known as cube

pruning (Huang and Chiang, 2007) is utilized to incorporate an n-gram language model

into translation models with a context-free component, and the beam-search approach

described by Koehn et al. (2003) is used with phrase-based models.

Unless otherwise noted, experiments use a 3-gram language model trained on the

target side of the parallel training data. In the case of systems evaluated on test sets from

NIST MT Evaluations, the training data was been supplemented with the AFP and Xinhua

portions of the English Gigaword corpus, version 3. Evaluations that make use of Work-

shop on Statistical Machine Translation (WMT) data use the provided English monolin-

gual training data. Modified Kneser-Ney smoothing is used for all language models (Chen

and Goodman, 1996).

81

3.1.2 Translation models

Many translation models can be represented either as weighted finite-state transducers or

weighted synchronous context-free grammars (Lopez, 2008a). I review a specific instance

of each, phrase-based translation models (Koehn et al., 2003) and hierarchical phrase-

based translation models (Chiang, 2007).

3.1.2.1 Phrase-based translation

Phrase-based translation (Koehn et al., 2003) models the translational equivalence be-

tween two languages using pairs of phrases (strings of words) in the source and target

language that have the same meaning. Phrases, which are learned automatically from

parallel corpora, are not required to correspond to phrases in any particular syntactic the-

ory: they must only be contiguous sequences of words. Phrases are learned automatically

from a word-aligned parallel corpus, which is a corpus of text in two languages, where the

word-to-word (or phrase-to-phrase) correspondences are marked with alignment links. A

word alignment may be visualized with a two dimensional grid with the words of each

sentence in the x- and y-axes. Figure 3.1 shows an example word alignment. Word align-

ments are induced from a parallel corpus, typically using expectation maximization; for

more information see Och and Ney (2003).

From every sentence pair, phrases are extracted so as to be consistent with the word

alignment. Consistency means simply that if you draw a box around the proposed phrase

pair in the alignment grid, then no alignment links will fall directly above, below, to the

left or right of it (diagonal points may remain). Figure 3.1 shows two consistent pairs

82

All
Gaul
is
divided
into
three
parts
.

Ga
llie
n

in se
ine
r

Ge
sa
mt
he
it

ze
rfä
llt

in dre
i

Te
ile
n

.

Figure 3.1: A German-English sentence pair with word alignment and two consistent
phrases marked.

with rounded rectangles superimposed over the word alignment grid. Table 3.1 shows all

the phrases (up to length 4 on the German side) that may be extracted from the example

aligned sentence pair. When inducing a phrase based translation model, phrase pairs are

using this heuristic and gathered into a collection which is referred to as a phrase table.

While phrase pairs capture lexical differences across languages, word order dif-

ferences between the two languages are handled in one of two ways: 1) phrase pairs

memorize local word order differences or 2) phrases from the source language may be

translated ‘out of order’. For an example of the latter, when translating from Arabic (a

VSO language) into English (an SVO language), the subject in the Arabic sentence can

be translated first, followed by the verb, leading to the correct English order.

Model features. The typical model features used with phrase based translation are: the

log relative frequency of the phrase pairs used in a translation (in both directions), a

lexical phrase translation log probability of each phrase pair, a count of the number of

words and phrases used, a distortion score (typically representing how much reordering

83

Table 3.1: Phrases up to size 4 (source side) extracted from the aligned sentence pair in
Figure 3.1.

German English
Gallien Gaul
zerfällt is divided
in into
drei three
Teilen parts
. .
zerfällt in is divided into
in drei into three
drei Teilen three parts
Teilen . parts .
in seiner Gesamtheit All
zerfällt in drei is divided into three
in drei Teilen into three parts
drei Teilen . three parts .
Gallien in seiner Gesamtheit All Gaul
zerfällt in drei Teilen is divided into three parts
in drei Teilen . into three parts .

was used), and the target language model log probability. These are combined in a linear

model (§3.1.3).

Translation algorithms. Phrase based translation can be understood as composing an

identity-transducer representing f with a WFST representing the phrase table,5 a WFST

representing the reordering model, and a WFST representing the target language model

(Kumar et al., 2006). Standard WFST composition algorithms can be used. However, the

number of states in f◦G ◦E is in O(2d ·d2 ·m), where d is a limit on how far a word may

be reordered during translation (Lopez, 2009). Because of the intractably large number

of states that result, it is more common to employ a heuristic beam-search composition

5An example WFST encoding of a phrase transducer is shown in Figure 5.2 (in Chapter 5)

84

algorithm to compute (with high probability) the maximum-weight path in (F ◦G ◦E)↓

or a highly weighted subset of it (Koehn et al., 2003). I review this algorithm now.

Phrase-based translation translates an input sentence f by selecting sub-spans of

the input of that have not yet been translated and matching an entry in the phrase table,

choosing a translation from among the possible translations listed and writing it down.

Then another untranslated sub-span is selected, translated and placed to the right of the

previous one. Once all words in f have been translated, creating a hypothesis e from

left to right, the process completes. Both to reduce the size of the translation space and to

prevent having to score implausible candidates with the relatively weak reordering models

that are used, when translating source phrases in a non left-to-right order, the requirement

is usually imposed that the distance from the first untranslated position in the sentence

may not exceed d source words.

The phrase-based translation algorithm defines a search space in terms of states

uniquely identified by the following elements:

1. The source coverage vectors, which is a bit string indicating what words in the

source sentence have been translated.

2. The target language model context, which is the final n−1 words of the hypothesis

in an n-gram Markov language model (but see Li and Khudanpur (2008)).

3. The position of the last source word translated, which is used to compute the dis-

tortion, or reordering, score.

The partial hypotheses, represented by what state they terminate in, are organized into

stacks (priority queues), based on the number of words that are translated in them, and

85

e: Mary
f: *--------
p: .534

e: witch
f: -------*-
p: .182

e:
f: ----------
p: 1

e: Mary did not
f: **-------
p: .122

e: Mary slap
f: *-***----
p: .043

Figure 3.2: A fragment of the search space for a phrase-based decoder, reprinted from
Koehn (2004).

translation proceeds by extending states from the stacks associated with ever increasing

number of translated words. Partial hypotheses whose scores are too far away from the

best-scoring hypothesis (using the linear model on the completed part of the hypothesis

and a heuristic ‘future cost’ estimate that attempts to model how expensive it will be

to translate the remainder of the sentence) are discarded. The others are extended by

selecting an uncovered portion of the source sentence and generating a state. This state

will either be new, in which case it is added to a stack, or otherwise it will be combined

with an existing item, which is referred to as recombination. By only keeping track of a

certain number of hypothesis in each stack (and discarding the rest), the running time of

the translation process using this algorithm is can be bound by trading off running time

for search errors. Figure 3.2 illustrates a phrase-based decoder search graph, translating

the Spanish sentence Maria no daba una bofetada a la bruja verde (in English, Mary did

not slap the green witch).

The space of items explored by this algorithm is structured as the WFST, f ◦G ◦

86

E , where edges are permitted to have multiple words on them (Ueffing et al., 2002).

Specifically, each item processed is a state in the WFST, and each extension by a phrase

pair, is the transition label. Recombination of items indicates that a state has multiple

incoming transitions.

Strengths and weaknesses. Phrase-based translation models are an efficient,6 simple

model that performs extremely well, especially when large amounts of parallel training

data are available (Zollmann et al., 2008). Their two most serious weaknesses are an

inability to model or efficiently represent long-range reordering patterns (that is, word

order differences more than 10 or so words) and their inability to model discontinuous

spans (but see Galley and Manning (2010)). Despite this, they are used in a number of

high-quality translation products, such as Google Translate.

3.1.2.2 Hierarchical phrase-based translation

To address the weaknesses of phrase-based translation models, Chiang (2007) introduced

hierarchical phrase-based translation models, which permit phrase pairs learned from data

to contain variables into which phrases can be substituted, in a hierarchical manner. Not

only does this mean that discontinuous spans can be modeled, but it also provides a means

of modeling longer-range reordering patterns. With such gaps, phrase pairs therefore have

the form of synchronous context-free grammar rules with a single non-terminal category,

6As noted above, their efficiency is due to the existence of good quality search heuristics.

87

X; for example:7

X → 〈X in seiner Gesamtheit,All 1 〉

X → 〈zerfällt in X, is divided into 1 〉

X → 〈den X hat der X gesehen, the 2 saw the 1 〉

Like non-gap phrase pairs from above, these gapped rules are learned from word aligned

corpora. Intuitively, they can be understood as arising by the ‘subtraction’ of a consistent

phrase pair from a larger phrase pair. For more information refer to Chiang (2007) and

Lopez (2008b).

To the automatically extracted rules are added two additional ‘glue rules’, which

mean that sentence pairs can be derived by the grammar by simple left-to-right concate-

nation.

S → 〈X, 1 〉

S → 〈S X, 1 2 〉

Because the translation model has the form of a WSCFG, translation can be carried out
7The notation used here is slightly different than Chiang’s notation, which uses correspondence indices

on both the input and outputs the rules. That is, where I write

X→ 〈den X hat der X gesehen, the 2 saw the 1 〉 ,

Chiang, and a number of other authors following his lead, write:

X→ 〈den X1 hat der X2 gesehen, the X2 saw the X1〉 .

The decision to deviate from his convention was only to simplify the definition of well-formed WSCFG
rules (see §2.2.2); the capacity of the grammars is not changed.

88

using any of the WFST-WSCFG composition algorithms introduced in the previous chap-

ter (§2.3.1.5), which are similar to well-known monolingual parsing algorithms.8 Since

hierarchical phrase base translation models are constructed so that they do not contain

any ε-rules, a bottom-up composition (parsing) algorithm is typically used for transla-

tion. The result of this composition operation is a WSCFG that encodes all translations

of the source sentence in the output language. This object is typically encoded as a di-

rected, ordered hypergraph and called a translation forest. Figure 3.3 shows an example

hierarchical phrase based translation grammar and two representations of the translation

forest generated by applying it to an example input sentence. Typically this forest will

be composed with E and then a derivation will be selected, for example, by finding the

highest-weighted derivation.

Since an n-gram language model is equivalent to a WFST (§3.1.1), any general

WFST-WSCFG composition algorithm (such as the one described in §2.3) can be used

to incorporate the language model. Although language model composition requires only

polynomial time and space (as a function of the length of the input sentence), an exhaus-

tive composition is nevertheless too expensive to be computed exactly (even for bigram

language models), making a heuristic approach necessary. I therefore use an approximate

composition algorithm called cube pruning (Huang and Chiang, 2007). Like the heuris-

tic beam search used for phrase-based translation, cube pruning only composes the most

promising derivations with the language model, making it possible again to trade running

time for search errors.9

8The input sentence f is ‘parsed’ by the source side of the synchronous grammar, which induces a
translation forest in the target side.

9Other approximate composition algorithms with similar characteristics (namely the ability to trade
speed for accuracy), have been proposed as well (Venugopal et al., 2007).

89

f – input sentence: diànzi shàng de māo

G – translation model (weights not shown; start symbol is S):

S → 〈X, 1 〉
X → 〈māo,a cat〉
X → 〈gǒu,a dog〉
X → 〈shǔ,a rat〉
X → 〈diànzi shàng, the mat〉

X → 〈X zài X, 1 in 2 〉
X → 〈X de X, 1 2 〉
X → 〈X de X, 1 ’s 2 〉
X → 〈X de X, 2 of 1 〉
X → 〈X de X, 2 on 1 〉

(f◦G)↓ – output-projected translation forest (as a CFG; start symbol is 0S4):

0S4 → 0X4

3X4 → a cat

0X2 → the mat

0X4 → 0X2 3X4

0X4 → 0X2 ’s 3X4

0X4 → 3X4 of 0X2

0X4 → 3X4 on 0X2

(f◦G)↓ – output-projected translation forest (as a directed hypergraph):

0X4

3X40X2

0S4

the
 m

at a cat

's

1
2

1 2

2
of 1

2 on 1

1

1 1
1

1 2
2

2 2

1

Figure 3.3: An example of a hierarchical phrase based translation. Two equivalent repre-
sentations of the translation forest are given. Example adapted from Li and Eisner (2009).

90

Model features. The typical model features used with hierarchical phrase based trans-

lation are similar to those used in the original phrase based translation: the log relative

frequency of the rule pairs used in a translation (in both directions), a lexical phrase trans-

lation log probability of each phrase pair, a count of the number of words and rules used,

and the target language model log probability. These are combined in a linear model

(§3.1.3).

Strengths and weaknesses. Hierarchical phrase-based translation models have become

extremely popular since their introduction. Not only are they attractive from a modeling

perspective (they model discontinuous elements, they deal more effectively with mid-

range reordering phenomena, and they capture the intuition that language is hierarchical),

they can deal with reordering in polynomial time and space, unlike phrase-based models

(or any WFST model). On the other hand, hierarchical phrase-based translation models

consist of grammars that can be much larger than an original phrase-based translation

model, making them much more cumbersome to deal with large amounts of data. One

solution is to extract the applicable grammar rules on-the-fly by indexing of the training

data in a suffix array (Lopez, 2008b).

3.1.3 Model parameterization: linear models

Model parameterization refers to how weights are assigned to elements in the translation

relation and language model. Although in later chapters, probabilistic interpretations of

weighted sets will be required, these will still be instances of linear models that assign

91

a real-valued weight to a derivation.10 However, in general, this weight may or may

not have a particular probabilistic interpretation. The weight of a derivation d under a

linear model is defined to be the inner product of an m-dimensional weight vector Λ =

〈λ1,λ2, . . . ,λm〉 and an m-dimensional feature function ~H(d)= 〈H1(d),H2(d), . . . ,Hm(d)〉

that is a function of the derivation:

f (d,Λ) = Λ · ~H(d) =
m

∑
i=1

λi ·Hi(d)

It is further stipulated that global feature functions Hi(d) decompose additively over edges

in the derivation d in terms of local feature functions hi. The decomposition can be written

as follows:

Hi(d) = ∑
e∈d

hi(e)

As a result of this independence assumption, ~H(d) = ∑e∈d h(e) and if edge weights are

assigned by the following:

w(e) = Λ ·h(e) = ∑
i

λi ·hi(e) ,

then computing the total weight of the set using the tropical semiring (§2.1.1) computes

the weight of the best derivation (or, if back-pointers are used, the best derivation itself).

Intuitively, the individual feature functions Hi(d) represent some piece of evidence

about a given translation derivation. By changing the weight vector, the relative impor-

10I use the general term derivation to designate what is commonly called a path in a WFST and a deriva-
tion in a WSCFG. I will refer to the units of a derivation as edges, corresponding to transitions in a WFST
and rules in a WSCFG.

92

tance of different aspects of the relationship between inputs and outputs is emphasized.

It will often be necessary to compute the maximum derivation dmax(A;Λ) under

a linear model with parameters Λ from some set or relation A. This can be done in

linear time using the INSIDE algorithm (§2.4) with the tropical semiring, where addition

is defined to be the max operator, and edge weights are defined to be the inner product of

the weight vector and the local features Λ ·h(e).

3.1.4 Minimum error rate training (MERT)

In the context of machine translation (both phrase-based and hierarchical phrase-based),

the kinds of linear models just described rank the derivations representing alternative

translations of inputs. With different settings of the weight vector Λ, a the model assign

different weights resulting in a different ranking of outputs. Och’s algorithm (Och, 2003)

for minimum error rate training (MERT) is a gradient-free optimization method for setting

the weight vector Λ in linear models (§3.1.3) that is widely used in machine translation

(Koehn, 2009; Kumar et al., 2009; Lopez, 2008a; Macherey et al., 2008; Och, 2003). Al-

though it is limited in the number of features that it can effectively optimize (maximally

on the order of tens of features), it has two characteristics that make it particularly useful.

Since it is used to optimize a small number of features, it can generally do so with rel-

atively small amounts of development data (thousands of parallel sentences, typically a

mere fraction of the perhaps millions of parallel sentences available for many languages).

It is also possible to efficiently optimize non-differentiable loss functions, such as the 1-

best BLEU score, as well as loss functions that are defined in terms of global properties

93

of the model’s hypothesized output (and hence do not decompose over the model struc-

ture).11 Second, MERT optimizes the parameters of the model so as to obtain the best

possible performance on a development set in terms of the the maximum weight deriva-

tion decision rule. Since finding the maximum weight derivation is typically the most

efficient decoding strategy possible, models learned by MERT are particularly effective in

situations where decoding speed will be of concern.

I do not give a complete overview of the MERT algorithm or an empirical verifica-

tion of its effectiveness (for a comprehensive introduction, refer to the above citations),

but I will show that the line search inference procedure that it relies on can be expressed as

a total weight computation with a particular semiring (e.g., using the INSIDE algorithm;

see §2.4.2). Although the computation performed with the INSIDE algorithm using this

semiring is equivalent to an algorithm that has been introduced previously (Kumar et al.,

2009), by recasting the MERT algorithm in terms of familiar concepts, I hope to make

it more accessible to readers from other disciplines who are familiar with semirings and

inside algorithms, but who may not necessarily be comfortable with MERT. For example,

researchers in parsing and speech recognition might find it useful to be able to refine their

models using an optimizer that can target an arbitrary non-differentiable loss function.

3.1.4.1 Line search and error surfaces

Line search is a technique for minimizing an objective function f : Rm→ R. Briefly, the

algorithm works as follows. Starting from an initial point Λ ∈ Rm, a descent direction

11Note that while the global feature functions, Hk, are required to decompose with the structure of the
model into sums of local feature functions, hk, there is no such requirement for the error function.

94

v∈Rm is chosen (the criteria for selecting the direction depend on the specific line search

algorithm being used) and the algorithm searches in this direction to find the minimal

value of the objective function is found (in the case of MERT, the line search will find

the global minimum; however, other line search algorithms may only find local minima).

Then, the starting point is updated to this point and a new descent vector is chosen. A

common variant (and one that I use) is that many different descent direction vectors are

searched at each iteration, and the minimal value of the objective is selected across all of

them. The algorithm typically terminates when the objective fails to improve on succes-

sive iterations.

The MERT algorithm makes use of a line search algorithm for finding the parameters

of a linear model (§3.1.3) that minimize the error score of the maximum weight derivation

under the model, using those parameters. Each iteration j starts with a model Λ(j) ∈ Rm,

a search direction v ∈ Rm, and searches the space of parameters given by Λ̃(x), where

x ∈ (−∞,∞).

Λ̃(x) = Λ
(j)+ x ·v (3.1)

For machine translation models, the development set that is used to optimize parameters

consists of n sentences in the source language paired with references—typically one or

more human translations—in the target language,12 D = {〈f1,e1
ref〉, . . . ,〈〈f

n,en
ref〉}. An

error function E(ê,eref) computes an error score given a hypothesis ê and a reference set

eref.13 The error function must not depend on the model score of the maximum weight

12Recent work has also demonstrated that supplementing human-generated references with computer-
generated references is very effective when using MERT to optimize BLEU (Madnani, 2010).

13To keep the notation simple I have assumed that references are sentences; however, in practice they
may be sets of sentences or any other information (parse trees, etc.) used to compute an error score from a
hypothesis translation.

95

derivation Λ̃(x) · ~H(d) (or any other derivation). Succinctly, at each iteration j, the MERT

algorithm performs the following optimization:14

x̂ = arg min
x∈(−∞,∞)

n

∑
i=1

E(o(argmax
d

(fi ◦G ◦E ;

=Λ̃(x)︷ ︸︸ ︷
Λ+ x ·v))︸ ︷︷ ︸

max weight translation of fi given Λ̃(x)

,ei
ref)

 (3.2)

The value x̂ is then used in Equation (3.1) to update the model parameters for the next

iteration:

Λ
(j+1) = Λ

(j)+ x̂ ·v

In practice, at each iteration, many random starting points and many random direction

vectors are chosen (each pair of which yields a different corpus error surface), and the

minimum error score across all search directions and start points is computed. This com-

putation can be trivially parallelized.

Because the line search in Equation (3.2) indicates that an uncountably infinite num-

ber of different models are searched, even a single starting point and search direction may

seem daunting. I now look at how to compute this minimum exactly—and in finite time.

Note that the inner product of any feature vector of a derivation ~H(d) and Λ̃(x) defines a

line in R2 where x is how far along v the starting parameters have been moved and y is

the model score of the derivation, not its error score—MERT requires that a derivation d

have a constant error score, regardless of its model score:

14In Equation (3.2), o indicates that output string yield of the derivation is used by the error function to
score it against the reference (§2.4.1).

96

y

x

d1

d2

d3

Figure 3.4: A set of three derivations as lines. The height on the y-axis represents the
model score of the derivation as a function of x, which determines how far along the
descent vector v the starting parameters Λ are translated.

fd(x) = Λ̃(x) · ~H(d)

= (Λ(j)+ x ·v) · ~H(d)

= v · ~H(d)︸ ︷︷ ︸
a=slope

·x +Λ
(j) · ~H(d)︸ ︷︷ ︸

b=y-intercept

Since it has been stipulated that global features of a derivation, Hi(d), must decompose

into local feature functions of edges (§3.1.3), this can be further rewriten as follows:

fd(x) = ∑
e∈d

(
v ·h(e) · x+Λ

(j) ·h(e)
)

=

(
∑
e∈d

v ·h(e)

)
︸ ︷︷ ︸

a=slope

·x+

(
∑
e∈d

Λ
(j) ·h(e)

)
︸ ︷︷ ︸

b=y-intercept

Given a set of competing derivations {di}, for example, the set of different trans-

lations of an input under a translation model, each with its own feature vector, ~H(di),

this induces a set of lines C = {y = a1x+b1,y = a2x+b2, . . . ,y = akx+bk}. Figure 3.4

97

shows a plot of the lines corresponding to the scores of 3 derivations, given a Λ(j) and v.

Furthermore, for every x, it is possible to select the best derivation in the set from such a

plot. Moreover, the set of the most highly-weighted derivations at some x form an upper

envelope (de Berg et al., 2000)– that is, given a model Λ and a direction vector v, the

best model score is piecewise linear in the step size x. Since MERT seeks to optimize the

error count of the derivation with the highest model score, it need only pay attention to

the derivations in the upper envelope, disregarding all others (hence, it is not necessary to

explicitly search the range (−∞,∞) nor is it necessary to explicitly search every derivation

in a set!). In Figure 3.4, the three segments that make up the upper envelope shown in

bold.15

At this point, it will be more convenient to think of each derivation line y = fd(x) as

a single point, taking advantage of the point-line duality (de Berg et al., 2000). This dual

form represents each line y = ax+b in the primal space with the point (a,−b) in the dual

space (conversely, primal points become lines in the dual). Note that the y-intercept is

negated in the dual transform. Thus, the line corresponding to the derivation d is the dual

point 〈∑e∈d v ·h(e),−∑e∈d Λ ·h(e)〉. Figure 3.5 shows the relationship between primal

and dual forms, and also displays the isomorphic geometric concepts of upper envelope

(in the primal plane) and lower hull (in the dual plane).

The MERT algorithm finds parameters that minimize the error score of the maximum

weight derivations of the model using those parameters—therefore, for each training in-

stance, the possible maximum weight derivations correspond to lines that are part of the

15The figures in this section were generated using code adapted from Adam Lopez’s PhD dissertation
(Lopez, 2008b).

98

(Primal)

y

x

`1

`2

`3

(Dual)

b

a

`1

`2
`3

Figure 3.5: Primal and dual forms of a set of lines. The upper envelope is shown with
heavy line segments in the primal form. In the dual plane, an upper envelope of lines
corresponds to the extreme points of a lower hull (lower hull shown with dashed lines).

(Primal)

`′

(Dual)
`′

Figure 3.6: A hidden line `′ is obscured by the upper envelope in the primal form and
(equivalently) is not part of the lower hull in the dual form.

upper envelope.16 The algorithm can also exploit the fact that some lines (derivations)

are not part of the upper envelope. For example in Figure 3.6, the line (`′) is hidden be-

neath the upper envelope. In the dual plane, an upper envelope of lines corresponds to

the points that form a lower hull (de Berg et al., 2000). Hidden lines correspond to points

that do not lie on the lower hull. Lines obscured beneath the upper envelope correspond

to derivations that will never be the maximally weighted derivation, under any value of

x, and the algorithm ignores them. However, a different starting Λ and direction vector

v will typically produce an upper envelope containing lines corresponding to different

derivations. For this reason, a number of Λ and v values are tried at each iteration.

For a set of derivations corresponding to alternative translations of an input, a start-

ing weight vector Λ and a descent direction v, the transition points (the x-coordinates

16If they were not part of the upper envelope, they would not be the maximum derivation—the upper
envelope is defined by taking the maximum of a set of lines at each point.

99

where the lines of the upper envelope intersect) are the points where the best derivation

in a set changes as the weights are changed by varying the model parameters according

to Equation (3.1). The x-coordinate of the transition points (which is all that is necessary

to compute) are the positions where segments in the upper envelope intersect, and (some-

what less obviously) they are equal to the negative slopes of the lines that form the lower

hull in the dual plane.17 Since finding the x-coordinate (actually, it will be a range on the

x-axis) that minimizes the error count is the goal, an error surface can be created from

an upper envelope by evaluating the error function E for each segment (corresponding to

a unique derivation) in the upper envelope.18 Figure 3.7 shows an example of how the

error surfaces relate to the transition points in the upper envelope, using an example de-

velopment set consisting of two sentences. By assumption, the error function is constant

for a given derivation, so the error surface for a set of competing derivations is piecewise

constant in x.

Since it is assumed that the error function decomposes linearly across sentences in

a corpus, the per-sentence error surfaces can be merged into a corpus-level error surface

by adding the error surfaces together.19 Figure 3.8 shows how the error surfaces add,

producing the development set error surface. Note that when adding error surfaces, the

17I omit the derivation showing the correspondence between the dual slopes and transition points since it
requires only basic algebra to show and provides no obvious further insight into this problem.

18Note that this means the algorithm need only have evaluate the error function for the (possibly small)
number of hypotheses whose derivations correspond to lines that are actually part of the upper envelope.
This fact has been exploited to use human evaluators to score hypotheses manually (Zaidan and Callison-
Burch, 2009).

19Although many useful metrics do not appear to decompose additively across independent training
examples, these can often still be optimized with MERT. In these cases, the error function is defined so as
to return vectors of sufficient statistics which are added together across sentences and used to compute a
corpus level metric at the end. For example, both BLEU and F-measure can be optimized, although neither
of these decomposes linearly across instances. When BLEU is optimized, the sufficient statistics are clipped
n-gram match counts and hypothesis lengths; when optimizing F-measure, they are the number of matches
and the number of misses.

100

(Env. 1) (Env. 2)

(Error 1)

a b

(Error 2)

c d

Figure 3.7: Each segment from the upper envelope (above) corresponds to a hypothesis
with a particular error score, forming a piecewise constant error surface (below). The
points a, b, c, and d are the transition points.

transition points in the sum of the error surfaces are the union of the transition points of

the individual error surfaces.

Once the error surface for the entire development set has been computed, the seg-

ment with the lowest error is chosen. This is accomplished with a simple search through

the segments of the development set error surface. Even though the entire space x ∈

(−∞,∞) is implicitly searched by the line search, this is guaranteed to be manageable in

size (see discussion below). In the example development set consisting of 2 sentences,

the segment with the best error score is the segment bd, and the value x̂ is selected that is

the midpoint of this segment. This x̂ is then used to update the parameter settings for the

next iteration: Λ(j+1) = v · x̂+Λ(j).

3.1.4.2 The upper envelope semiring

In the previous section, I showed how to optimize weights of a linear model using an error

function E so that the error score of the maximum weight derivations of a model applied to

101

(Error surface 1)

a b

(Error surface 2)

c d

(Dev set error surface)

a cb d

Figure 3.8: Adding two error surfaces (each from a single sentence) to create a corpus
error surface corresponding to the error surface of a development set consisting of two
sentences.

a development set is minimized. However, the algorithm crucially depends on being able

to efficiently compute the upper envelope for a set of derivations, given a starting weight

vector Λ and descent direction v. The original presentation of the algorithm advocated ap-

proximating the contents of this set using k-best lists (Och, 2003). However, a k-best list

is only a minuscule fraction of the derivations encoded in fi ◦G ◦E , which makes this ap-

proach unstable. However, Macherey et al. (2008), whose work was extended by Kumar

et al. (2009), showed that for a given Λ and v the upper envelope of derivations could be

computed exactly using dynamic programming for WFST and WSCFG representations

of fi ◦G ◦E . Furthermore, while fi ◦G ◦E does in general encode a set of derivations

whose size is exponential in the size (in terms of edges and nodes) of fi ◦G ◦E , the upper

envelope is guaranteed to contain a number of segments that is only linear in this size (Ku-

102

Table 3.2: Upper envelope semiring. See text for definitions of LOWERHULL and the run
times of the operations.

Element Definition
K {`1, `2, . . . , `n} ∈ 2R

2
where `i is of the form 〈ai,bi〉, and the points

`i form the extreme points of a lower hull in the (a,b)-plane.
A⊕B LOWERHULL(A∪B)
A⊗B {a+b | a ∈ A ∧ b ∈ B} (Minkowski addition)

0 /0

1 {〈0,0〉}

mar et al., 2009; Macherey et al., 2008). Unfortunately, Kumar et al. gave a specialized

algorithm whose relationship to more familiar inference algorithms was rather unclear. I

describe the algorithm now in terms of more familiar concepts, semirings and the INSIDE

algorithm.

In this section, I introduce a novel semiring, which I designate the upper envelope

semiring, which can be used with the INSIDE algorithm to efficiently compute the exact

upper envelope of all derivations in fi◦G ◦E for a given Λ and v. Although the output and

running time of the INSIDE algorithm with the upper envelope semiring are equivalent to

the specialized algorithm described by Kumar et al. (2009), formulating the computation

in terms of a semiring is intended to make this material accessible to a broader audience.

Furthermore, properties of the MERT algorithm can be proved as properties of the ele-

ments of the semiring (which are well-known geometric objects). The elements of the

upper envelope semiring are given in Table 3.2. Below, I prove that this system fulfills

the semiring axioms as well as the correctness of using this with the INSIDE algorithm to

compute the upper envelope.

The upper envelope semiring has values that are sets of the lines forming an upper

103

envelope, but they are represented as points in the dual plane. The semiring addition oper-

ation depends on the LOWERHULL algorithm, which removes any points from the set that

are not the extreme points of the set’s lower hull. There are number of O(|A| log |A|) al-

gorithms for doing so, for example Graham’s Scan and the sweep-line algorithm (de Berg

et al., 2000; Macherey et al., 2008). Figure 3.6 shows an example of removing a point

from the lower hull (in the dual plane), which corresponds to deleting a line that is not part

of the upper envelope in the primal plane. The multiplication operation is the Minkowski

addition, a pairwise addition of sets of points. While this operation may be naı̈vely im-

plemented with an O(|A| · |B|) algorithm, because A and B are convex sets (because they

form a lower hull), a specialized algorithm applies that runs in time O(|A|+ |B|) (de Berg

et al., 2000).

Theorem 2. The system shown in Table 3.2 (upper envelope semiring) fulfills the semiring

axioms and is both commutative and idempotent.

Proof. The values in K are sets of lines with equations y = aix+ bi and represented by

sets of points 〈ai,−bi〉 in the dual plane. K is closed under ⊕ since, while the union of

two sets of points may generate a set that does not form a lower hull, those extraneous

points are removed by LOWERHULL. w⊕0 = w since the union of a set A with the empty

set is A, and the LOWERHULL operation is guaranteed not to have an effect since, by

stipulation, any value in K is already a lower hull. Addition is commutative, associative,

and idempotent. If the LOWERHULL operation were not applied, this would follow triv-

ially from the properties of union. Even with this supplemental filter, the commutativity

of addition is holds since LOWERHULL(A∪B) = LOWERHULL(B∪A) for all A and B.

104

Furthermore, since A∪A = A for all A, addition is idempotent.

What about associativity? The lines between adjacent points in the lower hull (with

vertical lines emitting from the left- and right-most points) can be understood as a way of

dividing the plane: the part above the lower hull (the inside region) and the part below (the

outside region). During filter and union, the extent of the inside region is growing left,

right, and downward. If, during union, a point is added that falls in the outside region, it

must necessarily become part of the union set’s lower hull or lower hull’s inside region,

which will have a greater extent than (and encompass) the inside region of operand sets.

Thus, any order of addition operations must yield the same division of the plan into inside

and outside regions, meaning associativity holds.

Now consider ⊗, which is defined to be the Minkowski sum of the two operands.

The semiring is closed under multiplication since Minkowski addition of two lower en-

velopes produces another set of points which is itself lower envelope; additionally, Minkowski

addition is commutative and associative (de Berg et al., 2000). {〈0,0〉} is the multiplica-

tive identity since adding 〈0,0〉 to all points in a set A will not change them. Distributivity

holds because multiplication is commutative.

Although the semiring axioms hold so long as the values used are sets of points

forming a lower hull, in MERT, each point a set has a particular semantics: for a point

〈a,b〉, the value a− bx corresponds to the score (under a linear model) of a derivation

as the weight vector is varied (as a function of x) according to Equation (3.1). I now

prove that using the upper envelope semiring with the INSIDE algorithm together with

a particular edge weighting of a hypergraph F = fi ◦G ◦E computes the dual of the

105

desired MERT upper envelope. This upper envelope is suitable for transformation into an

error surface as described above.

Theorem 3. Using the upper envelope semiring with the INSIDE algorithm over a hy-

pergraph F with each edge e having weight w(e) = {〈v ·h(e),−Λ ·h(e)〉} computes the

upper envelope of the entire set of derivations in F where derivation d corresponds to the

line fd(x) = (Λ+x ·v) ·~H(d), assuming global feature functions Hk decompose additively

in terms of local features functions hk.

Proof. Consider the case where F has a single derivation d. The appropriate upper enve-

lope is trivially a set containing a single line with equation fd(x) = (Λ+ x ·v) · ~H(d). By

the point-line duality, this is equivalent to a set containing the single point 〈v · ~H(d),−Λ ·

~H(d)〉. This set can be rewritten as follows:

{
〈v · ~H(d),−Λ · ~H(d)〉

}
=

{
〈∑

e∈d
v ·h(e), ∑

e∈d
−Λ ·h(e)〉

}

=

{
∑
e∈d
〈v ·h(e),−Λ ·h(e)〉

}
=

⊗
e∈d

w(e)

The last step is in the previous derivation is justified by the definition of⊗ in the upper en-

velope semiring. Now, what if a hypergraph F contains multiple derivations {d1,d2, . . . ,dn}?

The appropriate upper envelope of a set of derivations is the upper envelope of the union

of all characteristic lines for every derivation in F . In the dual form, this is the set of

106

points L that form the lower hull of the points corresponding to every derivation in F .

L = LOWERENVELOPE

(⋃
d∈F

{
〈v · ~H(d),−Λ · ~H(d)〉

})

= LOWERENVELOPE

(⋃
d∈F

⊗
e∈d

w(e)

)
=

⊕
d∈F

⊗
e∈d

w(e) (3.3)

This last step in this derivation follows from a fact that was remarked on in the previous

theorem: namely, the lower hull of a set of points S is the same whether it it is computed as

LOWERHULL(S) or if S is divided into subsets A and B such that S = A∪B, the lower hull

is computed as LOWERHULL(LOWERHULL(A)∪ LOWERHULL(B)). Equation (3.3) is

equal to Equation (2.6), the value computed by the INSIDE algorithm with any semiring

(§2.4.2), therefore INSIDE may be used to compute this value with the upper envelope

semiring.

Other properties. A remarkable thing about the upper envelope semiring is that the

growth in the cardinality of the set under multiplication (Minkowski addition) is more

tightly bounded than it might otherwise appear to be. Since both A and B consist of

points in the dual plane that form a lower hull (and are thus a convex set), a theorem

from computational geometry applies that says |A⊗B| < |A|+ |B| and can be computed

in linear time (de Berg et al., 2000).20

The number of lines in MERT upper envelope of any acyclic WFST (such as one

encoding fi ◦G ◦E) with edges E and states Q is bounded by |E|−|Q|+2, which follows

20Thanks are due to Dave Mount who pointed out the relevant theorems from computational geometry.

107

from a result from Macherey et al. (2008). Kumar et al. (2009) point out that these results

also hold for acyclic hypergraphs, and therefore, for non-recursive WSCFGs. These re-

sults are extremely important since it means the number of segments in the upper envelope

is linear in the size of the encoding of the input (that is, the number of nodes and edges),

even when the input represents an exponential number of derivations. Since the INSIDE

algorithm runs in O(|E|+ |Q|), this also guarantees that the time required to compute the

total upper envelope using the INSIDE algorithm will be polynomial in |E|+ |Q|, not in

the number of derivations, of which there may be O(|E||Q|).

3.1.4.3 Minimum error training summary

Although the upper envelope semiring only permits the restatement of an algorithm that

has already been described in the literature, this restatement has considerable practical

value. First, the presentation here makes use of semirings and the INSIDE algorithm

which are familiar to a broad audience in natural language processing research. This

will hopefully improve understanding of this widely used (but poorly understood) opti-

mization algorithm. Second, there are a number of toolkits that support generic semiring

computations over a variety of finite-state and context-free structures, including OpenFST

(Allauzen et al., 2007), the Joshua toolkit (Li et al., 2009a), and the cdec decoder (Dyer

et al., 2010). The upper envelope semiring can easily be implemented in any of them (and

has already been implemented in cdec). Finally, this generic presentation ensures that

novel grammar formalisms that are parameterized using semirings can make use of this

algorithm.

108

All translation experiments in this thesis make use of MERT to tune their parameter

weights on a held-out development set using the upper envelope semiring. For the exper-

iments in Chapters 4 and 5, I use a generic semiring weight framework and the INSIDE

algorithm to compute the upper envelopes from which error surfaces are generated (Dyer

et al., 2010). For the experiments reported in Chapter 4 and Chapter 5, the upper envelope

semiring implementation of MERT is used. For the experiments in this chapter, a k-best

approximation was used (Och, 2003).

3.1.5 Translation evaluation

Automatic evaluations of the quality of machine translation output is challenging and

an area of active and ongoing research. Matters are further complicated by the fact that

human annotators give rather unreliable judgments on many evaluation tasks when sys-

tem differences are slight (Callison-Burch et al., 2009). I will avoid participating in the

lively debate on the usefulness or quality of various translation metrics and instead rely

on established metrics. I primarily utilize the BLEU-4 metric (Papineni et al., 2002),

which is the geometric mean of n-gram precisions (where n ≤ 4) in a translation output

counterbalanced by a brevity penalty, which penalizes outputs that attempt to ‘game’ the

precision-oriented nature of the metric by being overly short. The BLEU metric ranges

between 0 and 1, and higher scores are better. The absolute range depends on the number

of reference translations used in scoring (multiple references permit n-gram matches from

any reference). Relative differences are also affected by the number of references. As a

rule, with 4 references (common with NIST evaluation sets) an increase of 1 BLEU is con-

109

sidered noteworthy, and with a single reference (common in the Workshop on Statistical

Machine Translation evaluations), smaller increases in the range of 0.5 are of interest.

3.2 Translation of WFST-structured input

Now that I have established the basics of statistical machine translation using phrase-

based and hierarchical phrase-based models, discussed their training using MERT, and

briefly touched on the evaluation of their output, I turn to an exploration of the trans-

lation of ambiguous input, when the various input alternatives are encoded as a WFST.

Since the translation process was formalized as a WFST composition cascade of weighted

transducers, that is, (F ◦G ◦E)↓, the process remains well defined the unambiguous in-

puts encoded in F are replaced with ambiguous ones. However, little has been said about

the source of the ambiguity: where does it come from and what alternatives does it entail?

What are the properties of a WFST that represents these alternatives? These questions are

considered now followed by a discussion of decoding algorithms for phrase-based trans-

lation models.

3.2.1 Sources of input finite-state ambiguity

One obvious source of ‘input ambiguity’ is when the output of a speech recognition sys-

tem is used as the input to a machine translation system. For example, the task of spoken

language translation is to recognize speech (using an ASR system) in the source language

and then translate it into some target language. While it is common to use only the single

best guess from the output of the recognizer, ASR systems typically define a distribu-

110

tion over possible recognition strings in the source language, which can be encoded in F

and translated, producing a weighted set of translation outputs consisting of strings that

may derive from many different transcription hypotheses. Furthermore, since ASR sys-

tems are typically based on finite-state models, their output distribution is usually already

structured as a WFST (Jelinek, 1998). Using WFSTs representing the hypothesis space

of a recognizer as input to a translation system has been explored in considerable detail

in previous work, especially when the translation model (G) is also structured as a WFST

(Bertoldi et al., 2007; Mathias and Byrne, 2006). However, I consider here the perfor-

mance of translation models with a context-free structure on WFST input that encodes

recognition ambiguity.

Although spoken language translation is a natural application for the ability to trans-

late weighted sets of source language strings, another source of ambiguity can be seen

when one conceives of the development of a translation system as consisting of a series

of decisions which could have several different outcomes. Such ‘development time’ de-

cisions include committing to a particular approach to word segmentation or the amount

of morphological simplification (such as stemming) to use as preprocessing. Alternative

outcomes for each of these decisions may give rise to a different string of input words

which can be encoded easily and compactly in a finite-state object. Input sets that repre-

sent preprocessing alternatives will be used as the inputs in experiments below.

111

3.2.2 Properties of finite-state inputs

When a WFST is used to encode a weighted set of inputs, observe that the inputs to a

translation system are only meaningful when they have a finite length. It is therefore

necessary (as well as useful) to require that the WFSTs representing the input be acyclic,

therefore defining a star-free language.

Word lattices are a restricted subset of WFSTs that have no cycles as well as unique

start and end states.21 It is further useful to distinguish among three kinds of word lat-

tices (examples of each class are shown in Figure 3.9): (a) word lattices that unambigu-

ously generate a single sentence; (b) a confusion networks (CNs), which preserve the lin-

ear structure of a sentence, but which may have multiple edges between adjacent nodes,

thereby encoding a multitude of paths.22 CNs are typically constructed from unrestricted

word lattices lattices by ‘pinching’ different branches of the lattice together and merging

the weights such that the CN arc represents the posterior probability (under, for example,

a speech recognition system) of the word (Mangu et al., 2000). Unless specified other-

wise, I will use the term confusion network to refer to this structure without implying

any particular weight semantics. The last class (c) are arbitrary word lattices, WFSTs

restricted only to have a unique initial and final state and no cycles. In contrast to fully

general word lattices, which can represent any set of strings, CNs may overgenerate the

strings that they are intended to model (this is necessary because CNs must adhere to a

particular structure). The number of strings encoded by a word lattice (or CN) is expo-

21This restriction makes WFSTs share more properties with a sentence: namely a unique source and
end point, making it easier to adapt algorithms translation algorithms that were originally designed to
manipulate sentences rather than WFSTs.

22Although every path passes through every node in a CN, the strings encoded may be of different lengths
on account of ε-transitions.

112

0

1x

2a

y

3
b
c

0 1

a

x

ε

2b 3
d
c

0 1a 2b 3c

Figure 3.9: Three examples of word lattices: (a) sentence, (b) confusion network, and (c)
non-linear word lattice.

nential in the number of nodes in the lattices, with the base of the exponent related to the

edge density.

A word lattice is a useful representation of ambiguity because it permits any finite

set of strings to be represented, and allows for substrings common to multiple members

of the set to be represented with a single piece of structure.23 Additionally, all paths

spanning a pair of nodes form an equivalence class and contain approximately equivalent

content. Figure 3.10 illustrates some possible alternations, giving examples of the kinds

of alternations that can be expressed in lattices. In the upper lattice, the lattice encodes

alternative lexical choices for (approximately) the same underlying meaning, with the

span [3,5] forming an equivalence class expressing the meaning celebrities. The middle

23It should be pointed out that not every common substring found in a subset of the language gener-
ated by G can be encoded using shared structure. For example, although each sentence in the language
{xab,yab,zab,abw} contains the substring ab, an FSA representation must still contain at least two distinct
paths that generate ab: at least one that leads directly to the final state, and a different one that goes on
to generate w. If a more sophisticated formalism is used, such as a WCFG, a single edge could represent
the substring ab; however, this structure would no longer be finite-state; it has the generative capacity of a
context-free grammar. I consider such representations of ambiguity in Chapter 5.

113

3

4

521
Tom stalks celebrities

famo
us people

2 31

manzanas

amarillas

AMARILL

amarillos

MANZAN

3

4

6

2

1

5

recognize
speech

wreck
a nice beach

Figure 3.10: Three example lattices encoding different kinds of input variants.

lattice shows morphological variants of Spanish word forms (this lattice has the form of

a confusion network), and the lower example represents the kind of confusion that may

be found in automatic speech recognition, where spans in the lattice correspond (approxi-

mately) to spans of real time. Pairs of nodes not linked by any path do not generally have

a discernible relationship.

Encoding a word lattice in a chart. To simplify the adaptation of the phrase-based

translation algorithm discussed above (§3.1.2.1), it will be useful to encode a word lattice

G in a chart based on a topological ordering of the nodes, as described by (Cheppalier

et al., 1999). The starting node should have index 0 and the ending node will have index

|Q|− 1, where |Q| is the number of states in the lattice. The nodes in the lattices shown

in Figure 3.9 are labeled according to an appropriate numbering.24

The chart representation of the graph is a triple of 2-dimensional matrices 〈F,p,R〉,
24A lattice may have several possible topological orderings, any of which may be chosen.

114

which can be constructed from the numbered graph. Fi, j is the word label of the jth

transition leaving node i. The corresponding transition cost is pi, j. Ri, j is the node number

of the destination of the jth transition leaving node i. Note that because lattices are acyclic,

Ri, j > i for all i, j. Table 3.3 shows the word lattices from Figure 3.9 represented in matrix

form as 〈F,p,R〉, weights assume the probability semiring and a uniform distribution over

paths.

0 1 2
F0 j p0 j R0 j F1 j p1 j R1 j F2 j p2 j R2 j

a 1 1 b 1 2 c 1 3
a 1

3 1 b 1 2 c 1
2 3

x 1
3 1 d 1

2 3
ε

1
3 1

x 1
2 1 y 1 2 b 1

2 3
a 1

2 2 c 1
2 3

Table 3.3: Topologically ordered chart encoding of the three lattices in Figure 3.9. Each
cell i j in this table is a triple 〈Fi j,pi j,Ri j〉

3.2.3 Word lattice phrase-based translation

The chart encoding of word lattices introduced in the previous section is closely related

to the way sentences are represented in a standard phrase-based decoder. I describe how

the decoding algorithm (which can be understood as a specialized finite-state composition

algorithm) can be adapted to translate word lattices that are encoded in a chart. Previous

work has adapted the phrase-based translation algorithm for confusion network decoding

(Bertoldi et al., 2007); however, I adapt the algorithm so as to translate general word

115

lattices.25

As described above in the introduction to phrase-based translation (§3.1.2.1), the

standard sentence-input decoder builds a translation hypothesis from left to right by se-

lecting a span consisting of untranslated (source language) words and adding translations

of this phrase to the end of the hypothesis being extended. Phrase-based translation mod-

els translate a foreign sentence f into the target language e by breaking up f into a sequence

of phrases f 1···i, where each phrase f i can contain one or more contiguous words and is

translated into a target phrase ei of one or more contiguous words. Each word in f must

be translated exactly once.

To generalize this algorithm to accept a word lattice F as input, it is necessary to

choose both a valid path through the lattice and a partitioning of the sentence this induces

into a sequence of phrases f 1···i. Although the number of source phrases in a word lattice

can be exponential in the number of nodes, enumerating the possible translations of every

span in a lattice is, in practice, tractable, as described by Bertoldi et al. (2007).

The word lattice decoder keeps track not of the words that have been covered, but

of the nodes, given a topological ordering of the nodes. For example, assuming the lattice

in Figure 3.9(c) is the decoder input, if the edge with word a is translated, this will cover

two untranslated nodes [0,1] in the coverage vector, even though it is only a single word.

As with sentence-based decoding, a translation hypothesis is complete when all nodes in

the input lattice are covered. Since the decoder supports non-monotonic decoding (where

source phrases are translated in an order that is not strictly left to right), the score for

25Decoders implemented using generalized WFST composition operations can deal with word lattices
without modification (Mathias and Byrne, 2006).

116

each hypothesis in the stack includes an estimate of the cost of translating the remain-

ing untranslated words. Without this, there would be a bias to translate high-probability

words first. For word lattices, the future cost estimate proposed by Koehn et al. (2003)

is generalized to be the best possible translation cost through any path of the remaining

untranslated nodes. When a sentence is encoded in a lattice, my generalization of the

future cost is equivalent to the Koehn definition.

Non-monotonicity and unreachable nodes. The changes to the decoding algorithm

described thus far are straightforward adaptations of the sentence decoder; however, non-

monotonic decoding of word lattices introduces some minor complexity that I discuss

now. In a standard sentence decoder, any translation of any span of untranslated words is

an allowable extension of a partial translation hypothesis, provided that the coverage vec-

tors of the extension and the partial hypothesis do not overlap. However, when decoding

lattice input, a further constraint must ensure that there is always a path from the starting

node of the translation extension’s source to the node representing the nearest right edge

of the already-translated material, as well as a path from the ending node of the trans-

lation extension to any future translated spans (if they exist). Figure 3.11 illustrates the

constraint. If the edge labeled a is translated, the decoder must not consider translating x

as a possible extension of this hypothesis, since there is no path from node 1 to node 2.

3.2.4 Word lattice translation with WSCFGs

Because phrase-based decoders rely on specialized composition algorithms to apply their

translation models, it was necessary to describe the adaptation of these algorithms to deal

117

0

1a

2

3x

Figure 3.11: The span [0,3] has one inconsistent covering: [0,1]+ [2,3].

with word lattice input. However, hierarchical phrase-based translation systems (based

on WSCFGs) can make use of the general composition algorithms (either the top-down

or bottom-up variants; §2.3) described in the previous chapter for the F ◦G portion of

the translation process. Furthermore, the techniques used to incorporate a target language

model (i.e., ◦E) do not need to be adapted when F is changed from a single sentence to a

word lattice. It is therefore not necessary to discuss the adaptation of a WSCFG decoder

to deal with word lattice input as I did with phrase-based decoders.

3.3 Experiments with finite-state representations of uncertainty

I now describe three experiments looking at applications of source language lattices: spo-

ken language translation, where the lattice encodes the speech recognizer’s transcription

hypothesis space (§3.3.1), morphological variant lattices (§3.3.2), where morphological

variants of the source words are encoded in a lattice, and segmentation lattices (§3.3.3),

where morphemes are segmented at different granularities.

118

3.3.1 Spoken language translation

Although word lattices and confusion networks have been used to improve the perfor-

mance of statistical systems in spoken language translation tasks, their utility has only

been verified using phrase based models. I thus compare a hierarchical (WSCFG) sys-

tem, Hiero, and an WFST system, Moses, modified to accept word lattices, as described

above. As an introduction, I give a motivating example for why WSCFGs are useful in

particular when translating the ambiguous output of a speech recognition system.

Because Arabic is primarily VSO, a large class of important collocations (a verb

and a characteristic object or preposition) are separated by an intervening subject. This

poses a challenge for finite-state models of Arabic-English translation, since any common

verb-object or verb-preposition pair, if treated as a unit, must be learned in phrases with

many distinct subjects. As an example, verb sa:fara (traveled) characteristically selects

preposition Pila (to) to express a destination, e.g.

〈sa:fara bu:S Pila london, Bush traveled to London〉

This useful generalization cannot be expressed as a non-hierarchical phrase pair, but it is

expressed naturally as a pair of synchronous context-free rules:

X→ 〈sa:fara X Pila X, 1 traveled to 2 〉

Rules of this sort have been shown to improve translation quality for text input,

and I argue that they can be equally advantageous when coping with input ambiguity

119

1 2 3 4 5 6 7
sa:fara 0.8 al 0.9 raPi:s 0.9 li 0.5 Pamiri:kij 0.9 Qala 0.3 baGda:d 1.0
safi:ra 0.2 ε 0.1 ε 0.1 al 0.4 Pamiri:ka: 0.1 la: 0.3

ε 0.1 Pila 0.2
fi: 0.1
ε 0.1

Figure 3.12: Example confusion network. Each column has a distribution over possible
words that may appear at that position.

from speech. Consider the confusion network shown in Table 3.12. This example shows

some ambiguities typical of an ASR system for the Arabic sentence sa:fara al-raPi:s al-

Pamiri:kij Pila baGda:d (in English, the American president traveled to Baghdad). In this

artificial example, the 1-best transcription hypothesis (top row) contains two mistakes.

The first mistake is at position 4, where correct word, the definite article al, has lower

probability than the preposition li. A conventional phrase-based system using confusion

network input can handle this case: one would expect any system trained on recent news

to contain the following correspondence with a high probability:

〈al-raPi:s al-Pamiri:kij, the American president〉

Phrase-based CN decoding effectively intersects the Arabic side of this phrase pair with

span [2,5] in the confusion network, which yields the phrase al-raPi:s al-Pamiri:kij. This

allows a relatively higher probability in the translation model to counterbalance the higher

ASR posterior probability for al-raPi:s li-Pamiri:kij, making it possible for the translation

to favor the ASR system’s less likely path.

However, consider the second error in the best ASR hypothesis, at position 6. Here

ASR misidentifies the preposition Pila (to) as Qala (on). A phrase-based system must

120

BNAT05 IWSLT-read IWSLT-spont.
avg. length 31 14 14
avg. depth 1.7 5.4 6.8

max. depth 20 95 83
avg. # derivations 1025 1025 1033

Table 3.4: Confusion network statistics for test sets.

compare of Pila baGda:d versus Qala baGda:d, but it will find little basis for distinguishing

them because their conditional probabilities are roughly equal.26 In contrast, a WSCFG

model allows the ambiguity to be resolved using a more robust comparison, ignoring the

irrelevant intervening material between verb sa:fara and the preposition. Since the verb

generally co-occurs with Pila, the grammar will have high probability for rule (3.3.1),

making it possible to favor a translation containing Pila even though the ASR system has

given it lower probability.

Chinese-English travel domain. I now examine some experimental results. Word lat-

tices of the Chinese-English ASR data were provided in the IWSLT 2006 distribution.

ASR word lattices (in this section and the next) were converted to confusion networks

using the SRI Language Modeling Toolkit (Stolcke, 2002). The word error rate (WER)

reported for confusion networks is the oracle WER, also computed using the SRI tools.

Chinese-English models were trained using a 40K-sentence subset of the BTEC corpus

(Takezawa et al., 2002); this corresponds to the training data provided for the IWSLT

2006 Chinese-English translation task. For the Chinese-English experiments, the lan-

guage model was trained using (only) the English side of this training bitext.27

26Verified in a corpus of newswire text.
27The Chinese side of the corpus came pre-segmented; I used a standard tokenizer on the English side.

121

Table 3.5: Chinese-English results for IWSLT-2006. Confusion net WER numbers are
oracles.

Input WER Hiero Moses
verbatim 0.0 19.63 18.40
read, 1-best (CN) 24.9 16.37 15.69
read, full CN 16.8 16.51 15.59
spontaneous, 1-best (CN) 32.5 14.96 13.57
spontaneous, full CN 23.1 15.61 14.26

The systems were tuned on DEV1 (506 sentences, 16 reference translations), a text-

only development set from IWSLT 2006. For the confusion network translation model,

the feature weight for the confusion network log posterior probability was set such that

λCN = λLM, since no ASR output was available for any set but DEV4, making it impossi-

ble to tune λCN automatically.

Table 3.5 shows the results of the hierarchical (Hiero) and non-hierarchical (Moses)

systems translating the DEV4 set from the IWSLT 2006 data (489 sentences, 7 reference

translations), along with an upper bound (translation of verbatim transcription).28 Both

models show an improvement for decoding the full confusion network when compared

to a one-best baseline and confirm previous results that have shown that using confusion

networks with the more degraded input associated with recognizing spontaneous speech

yields larger gains in translation quality than situations where the WER is low to begin

with (Bertoldi et al., 2007). The hierarchical system outperforms the non-hierarchical

system in every category, including those where confusion networks are used as input.

28The IWSLT data include both read and spontaneous speech. Confusion network complexity statistics
for the IWSLT test sets are shown in Table 3.4.

122

Table 3.6: Arabic-English training data. Sizes are in millions (M) of words.

LDC catalog Corpus Size
LDC2004T17 Arabic News Translation Text 4.4M
LDC2005E46 Arabic Treebank English Translation 1.2M
LDC2004T18 Arabic English Parallel News 1.0M
LDC2004E72 eTIRR Arabic English News Text 0.1M

Arabic-English news domain. Arabic-English models were trained on the sources

shown in Table 3.16. The Arabic-English lattices were generated by a state-of-the-art

617k word vocabulary Arabic ASR system trained on 136 hours of transcribed speech

and 1,800 hours of unlabeled data (Soltau et al., 2007). The language model for Arabic-

English experiments was trained on the English side of the training bitext, combined with

the LDC English Gigaword v2 AFP and Gigaword v1 Xinhua corpora. Training text

and confusion networks were preprocessed to separate clitics and attached particles from

stems using tools based on the Buckwalter Morphological Analyzer.

The Arabic-English experiment tested a situation where the baseline WER was far

lower and much larger amounts of training data were used.29 The non-overlapping de-

velopment (477 sentences) and evaluation (468 sentences) sets consist of automatically

recognized broadcast news and conversations in Modern Standard Arabic from several

Arabic language satellite channels that were translated into English. Only one reference

translation was available.

Because ASR development data were available, the models were tuned according

to the input they were to be evaluated on. That is, if non-ambiguous input was being

29The lattices used were generated from speech data that was part of the ASR system’s training data, so
the errors are much lower than is typical of the system. The reported WER was calculated after postpro-
cessing to separate clitics and particles.

123

Table 3.7: Arabic-English results (BLEU) for BNAT05-test

Input WER Hiero Moses
verbatim (0.0) 26.46 25.13
1-best 12.2 23.64 22.64
full CN 7.5 24.58 22.61

evaluated, text was used to tune the model (since no λCN is necessary); if ambiguous

input was being evaluated, confusion networks were used for tuning. Input confusion

network complexity statistics are shown in Table 3.4 (BNAT05). Table 3.7 summarizes

the results of the Arabic-English experiment.

As expected because of the lower WER, the margin for improvement between the

1-best confusion network hypothesis and the verbatim transcription is rather small. How-

ever, the hierarchical model still shows considerable improvement when decoding con-

fusion networks. Interestingly, the non-hierarchical model shows no improvement at all

when the full confusion network is incorporated. The hierarchical model outperforms

the non-hierarchical baseline in all categories, the pattern typically seen when translating

unambiguous input (Chiang, 2007; Zollmann et al., 2008).

Efficiency results. Timing experiments for the WSCFG-based decoder were conducted

on a AMD Opteron 64-bit server with 1.0GB RAM operating at 1.0GHz. For the IWSLT

test set, decoding a text sentence with the hierarchical model took an average of 3.0 sec-

onds. Decoding a confusion network took 12.8 seconds on average, a factor of 4.3 times

slower. This compares to a slowdown factor of 3.8 with the non-hierarchical phrase-based

model.

124

Summary. Similar gains are possible when using confusion network input to represent

alternative source language transcriptions in both hierarchical phrase-based (WSCFG-

based) translation system. Additionally, results of Bertoldi et al. (2007) for phrase-based

translation systems were reconfirmed. The impact of using confusion networks rather

than 1-best inputs on decoding speed is modest, especially considering the effective size

of the input space that is being searched.

3.3.2 Morphological variation

In the previous section, it was showed that by using confusion networks to encode the

hypothesis space of an ASR system, it was possible to efficiently search for the best

translation of any of the transcription hypotheses represented in that space. Translation

systems that model translation using WFSTs as well as WSCFGs were both able to take

advantage of input word lattices, an efficient finite-state representation of ambiguity, and

improve translation performance over a baseline in which ambiguity was not preserved.

In the next sections leveraging this technique of propagating uncertainty are extended to

the kinds of ambiguity that are found even in text-only translation systems.

The first of these sources of ambiguity concerns morphological analysis and deci-

sions made based on morphological analysis. Conventional statistical translation models

are constructed with no consideration of the relationships between lexical items and in-

stead treat different inflected (observed) forms of identical underlying lemmas as com-

pletely independent of one another. While the variously inflected forms of one lemma

may express differences in meaning that are crucial to correct translation, the strict in-

125

dependence assumptions normally made exacerbate data sparseness and lead to poorly

estimated models and suboptimal translations.

A variety of solutions have been proposed: Niessen and Ney (2001) use morpho-

logical information to improve word reordering before training and after decoding. Gold-

water and McClosky (2005) show improvements in a Czech to English word-based trans-

lation system when inflectional endings are simplified or removed entirely. Their method

can, however, actually harm performance, since the discarded morphemes carry some in-

formation that may have a bearing on the translation. Talbot and Osborne (2006) use a

data-driven approach to attempt to cluster source-language morphological variants that

are meaningless in the target language, and Yang and Kirchhoff (2006) propose the use

of a backoff model that uses morphologically reduced forms only when the translation of

the surface form is unavailable.

All of these approaches have in common that the decisions about whether to use

morphological information are made in either a pre- or post-processing step. I extend

the concept of translating from an ambiguous set of source hypotheses to the problem of

determining how much morphological information to include by defining the input to the

translation system, F , to be a weighted set sentences derived by applying morphological

transformations (such as stemming, compound splitting, clitic splitting, etc.) to a source

sentence f. Whereas in the context of an ASR transcription hypothesis, each path in F

was weighted by the log posterior probability of that transcription hypothesis, I redefine

the path weight to be a backoff penalty in the morphology model. This can be intuitively

thought of as a measure of the “distance” that a given morphological alternative is from

the observed input sentence. Just as it did in translating ASR output, my approach allows

126

decisions about what variant form to use to be made during decoding, rather than in

advance, as has been done in prior work.

3.3.2.1 Czech morphological simplification

The first experiment where decisions about what morphological transformations to apply

to the input into a translation system are deferred from development time to decoding time

looks at strategies for improving Czech-English translation by reducing the complexity

of Czech inflectional morphology.30 I describe a series of experiments using different

strategies for incorporating morphological information during preprocessing of the News

Commentary Czech-English data set provided for the WMT07 Shared Task. Czech was

selected because it exhibits a rich inflectional morphology, but its other morphological

processes (such as compounding and cliticization) that affect multiple lemmas are rela-

tively limited. The relative morphological complexity of Czech, as well as the potential

benefits that can be realized by stemming, can be inferred from the corpus statistics given

in Table 3.8, which show that the surface form of Czech has a very large number of types,

relative to other European languages. Since word types are the minimal unit of phrase-

based translation, this suggests that data sparsity could become a problem.

Data preparation and translation model. The Czech morphological analyzer by Hajič

and Hladká (1998) was used to extract the lemmas from the Czech portions of the training,

development, and test data (the Czech-English portion of the News Commentary corpus

distributed as as part of the WMT07 Shared Task).31 Data sets consisting of truncated

30The Czech-English experiments were originally published in Dyer (2007).
31http://www.statmt.org/wmt07/

127

Table 3.8: Corpus statistics, by language, for the WMT07 training subset of the News
Commentary corpus.

Language Tokens Types Singletons
Czech surface 1.2M 88,037 42,341
Czech lemmas 1.2M 34,227 13,129
Czech truncated 1.2M 37,263 13,093
English 1.4M 31,221 10,508
Spanish 1.4M 47,852 20,740
French 1.2M 38,241 15,264
German 1.4M 75,885 39,222

forms were also generated; using a length limit of 6, which Goldwater and McClosky

(2005) experimentally determined to be optimal for translation performance. I refer to

the three data sets and the models derived from them as SURFACE, LEMMA, and TRUNC.

Table 3.9 illustrates the differences in the forms. Czech-English grammars were extracted

from the three training sets using the methods described in Chiang (2007). Two addi-

tional grammars were created by combining the rules from the SURFACE grammar and

the LEMMA or TRUNC grammar and renormalizing the conditional probabilities, yielding

the combined models SURFACE+LEMMA and SURFACE+TRUNC.

Table 3.9: Examples of different Czech preprocessing strategies.

Model Type
SURFACE amerického
TRUNC americ
LEMMA americký

Confusion networks for the development and test sets were constructed by provid-

ing a single backoff form at each position in the sentence where the lemmatizer or trunca-

tion process yielded a different word form. The backoff form was assigned a cost of 1 and

128

1 2 3 4 5 6 7 8 9 10 11 12
z amerického břehu atlantiku se veskerá taková odů. jevı́ jako naprosto biz.

americký břeh atlantik s takový jevit

Figure 3.13: Example confusion network generated by lemmatizing the source sentence
to generate alternates at each position in the sentence. The upper element in each column
is the surface form and the lower element, when present, is the lemma.

the surface form a cost of 0. Numbers and punctuation were not truncated. A “backoff”

set, corresponding approximately to the method of Yang and Kirchhoff (2006) was gen-

erated by lemmatizing only unknown words. Figure 3.13 shows a sample surface+lemma

CN from the test set.

Experimental results. Table 3.10 summarizes the performance of the six Czech-English

models on the WMT07 Shared Task development set. The basic SURFACE model tends to

outperform both the LEMMA and TRUNC models, although the difference is only marginally

significant. This suggests that the Goldwater and McClosky (2005) results are highly de-

pendent on the kind of translation model and quantity of data. The backoff model, a

slightly modified version of the method proposed by Yang and Kirchhoff (2006),32 does

substantially better than the baseline. However, the SURFACE+LEMMA model outper-

forms both surface and backoff baselines. The SURFACE+TRUNC model is an improve-

ment over the SURFACE model, but it performances significantly worse than the SUR-

FACE+LEMMA model.
32The backoff model implemented here has two differences from model described by Yang and Kirchhoff

(2006). The first is that the ambiguity-preserving model based on composition effectively creates backoff
forms for every surface string, whereas their model does this only for forms that are not found in the surface
string. This means that in the model considered here, the probabilities of a larger number of surface rules
have been altered by backoff discounting than would be the case in the more conservative model. Second,
the joint model I used has the benefit of using morphologically simpler forms to improve alignment.

129

Input BLEU

SURFACE 22.74
LEMMA 22.50
TRUNC (l=6) 22.07
backoff (SURFACE+LEMMA) 23.94
CN (SURFACE+LEMMA) 25.01
CN (SURFACE+TRUNC) 23.57

Input Sample translation
SURFACE From the US side of the Atlantic all such odůvodněnı́ appears to be a totally bizarre.
LEMMA From the side of the Atlantic with any such justification seem completely bizarre.
TRUNC From the bank of the Atlantic, all such justification appears to be totally bizarre.
backoff From the US bank of the Atlantic, all such justification appears to be totally bizarre.
SUR+LEM From the US side of the Atlantic all such justification appears to be a totally bizarre.
SUR+TR From the US Atlantic any such justification appears to be a totally bizarre.

Table 3.10: Czech-English results on WMT07 Shared Task DEVTEST set. The sample
translations are translations of the sentence shown in Figure 3.13.

Interpretation of results. By allowing the decoder to select among the surface form

of a word or phrase and variants of morphological alternatives on the source side, the

lattice-input system outperforms baselines where hard decisions about what morpholog-

ical variant to use are made in advance of decoding, as is typically been in systems that

make use of morphological information.

The results shown in Table 3.10 also illustrate a further benefit that lattice-based

translation can have. Observe that for the LEMMA system, the word odůvodněnı́ has

been correctly translated. This is true despite the lemmatizer failing to analyze this form

properly (see Figure 3.13). However, the word alignment that was used during the induc-

tion of the translation grammar was able to correctly align this word when the surrounding

words had been lemmatized.

130

3.3.2.2 Arabic diacritization

The rich morphology of Czech makes it a challenge for translation. In some ways, Arabic

faces the opposite problem. Arabic orthography does not capture all the phonemic distinc-

tions that are made in the spoken language since optional diacritics are used to indicate

consonant quality as well as the identity of short vowels. When these diacritics are absent

(as is the case in virtually all text genres), a single orthographic form will correspond

to several phonemically distinct words. While homography is common in most writ-

ten languages, and machine translation models successfully deal with it by incorporating

contextual information in the source and target languages, the incidence and number of

Arabic homographs is far greater than in most languages. Furthermore, some distinctions

which are lost in the written language, such as whether a past tense verb is in the active or

passive voice, seem like they would be useful to be aware of when modeling translational

relationships. This insight was the motivation for a study by Diab et al. (2007), who used

SVMs to predict missing diacritics as a preprocessing step for MT. Although a variety of

diacriticization schemes were attempted, the study failed to find any set of diacritics that

consistently improved translation quality on an Arabic-English task. The authors con-

clude that the fragmentation of training data resulting from the proliferation of distinctive

forms resulted in poorly estimated translation models.

In this experiment, a lattice representing alternative diacritizations of the source

sentence should enable the translation system to make use of the more detailed morpho-

logical information when the exact form was observed during training but to back off to

less specific forms when not. The hypothesis is that quality will increase, since when

131

there is sufficient evidence to meaningfully distinguish the translations of two words that

are distinguished by a reconstructed diacritic these sharper distributions will be available,

but if not, the decoder will be able to back off to a surface model. Unlike in the previous

experiment, where alternatives were generated by removing information from a highly

inflected surface form, this experiment generates inflected forms (of varying complexity)

from a simplified surface form.

Data preparation. In this experiment, 10M words of Arabic-English parallel newswire

data was used to train translation models. In the baseline condition, the Arabic side of the

parallel corpus with no diacritics (which is standard for Arabic-English machine transla-

tion) was aligned. For the experimental conditions, the Arabic side of the training data

was analyzed using a suite of SVM classifiers used to predict the missing diacritics, as

described by (Habash et al., 2007). Six versions of the corpus were created which corre-

spond to five hypothetical best diacritizations for MT (one with no diacritics, correspond-

ing to the baseline, one with case markings, another with gemination symbols, one with

passive voice markers, one with silence markers, and one with full diacritics) as proposed

by Diab et al. (2007). Table 3.11 shows the six diacritization schemes used for the Ara-

bic phrase /saturammamu aljidra:nu/ (pronounced [saturammam uljidra:nu]), meaning

the walls will be restored. The fully specified form (with all diacritics) is written in the

Buckwalter Romanization of Arabic as saturam∼amu AljidorAnu; but, in text, this will

generally appear as strmm AljdrAn.

To build the translation grammar, the six diacritized versions of the corpus were

concatenated and a hierarchical phrase-based translation grammar was extracted from the

132

Table 3.11: Six diacritizations of the Arabic phrase strmm AljdrAn (adapted from Diab
et al. (2007)).

Romanization
NONE strmm AljdrAn
PASS sturmm AljdrAn

CASE strmmu AljdrAnu
GEM strm∼m AljdrAn
SUK strmm AljdorAn

FULL saturam∼amu AljidorAnu

Table 3.12: Results of Arabic diacritization experiments.

Condition MT03 MT05 MT06
BASELINE 45.0 42.2 44.2

LATTICE 45.9 43.1 45.1

union. A lattice was constructed by adding arcs between each node that correspond to

each of the five diacritization schemes used to train the model. Thus, the decoder can

use any of the diacritization schemes to translate any span of the source text. The results

reported here are for the SCFG-based decoder.

Experimental results. Table 3.12 shows the results of the Arabic diacritization lattice

experiments. For each test set (which were identical to those used by Diab et al. (2007)),

improvements in translation quality as measured by BLEU are observed. These results

are meaningful since they suggest that diacritics do carry information that is useful for

translation, and furthermore that these diacritics can be recovered using the techniques

proposed in Habash et al. (2007). However, being able to gracefully fall back to more

general forms (with diacritics removed) is crucial if the increased sparsity of the models

is not to overwhelm the gains attainable by the more precise models.

133

3.3.3 Segmentation alternatives with word lattices

In the previous two experiments, a distribution over possible inputs to an MT system

was utilized, both in the context of spoken language translation tasks, and in situations

where the optimal amount of morphological simplification that should be carried out dur-

ing preprocessing is unclear. In this section, word lattices are used to encode different

segmentations of the input. Like the question of the optimal level of morphological sim-

plification, this question is one that is conventionally answered when the translation sys-

tem is built; and here, as with the morphological simplification and diacritic restoration

examples above, the ambiguity-preserving processing model defers the decision to decod-

ing time, allowing the translation system to select sub-sententially among segmentation

alternatives. These lattices will be referred to as segmentation lattices.

Segmentation lattices also take full advantage of the word lattice’s representational

capabilities. Until now, only considered patterns of ambiguity that could be represented

using confusion networks were used. In this experiment, general word lattices are used,

and the problems associated with the ambiguity of path lengths in unrestricted lattices

must be considered. The use of segmentation lattices for translating into English from

Chinese and Arabic is now considered.

3.3.3.1 Chinese segmentation

Chinese orthography does not indicate word breaks. As such, a necessary first step

in translating Chinese using standard models of translation is segmenting the character

stream into a sequence of words, which is a (perhaps surprisingly) challenging task. First,

134

0

1

硬
2

硬质

4

硬质合金

质

3合

合金

金

5
号

6
号称

称

7
"

8
工

9
工业

业
10

牙

11
牙齿

齿

12
"

Figure 3.14: Example Chinese segmentation lattice using three segmentation styles.

the segmentation process is ambiguous, even for native speakers (readers) of Chinese.

Thus, even if a segmenter performs quite well relative to some gold standard segmenta-

tion that has been agreed upon by annotators, it is reasonable that there will still be other

alternative segmentations that would have been reasonable. Second, different segmenta-

tion granularities may be more or less optimal for translation: some parts of the sentence

may benefit from a less compositional translation, making a less granular segmentation

more natural. On the other hand, other translations may be relatively direct translations

of minimal elements of Chinese words. By encoding segmentation alternatives in the

input in a word lattice, the decision as to which granularity to use for a given span can

be resolved during decoding rather than when constructing the system. Figure 3.14 illus-

trates a lattice showing segmentation alternatives. Before looking at translation results, it

is necessary to first deal with one additional challenge that occurs in general word lattice

translation—the problem of measuring ‘distance’ between nodes in a lattice.

3.3.3.2 The distortion problem in word lattices

The distance between words in the source sentence is used to limit where in the target

sequence their translations will be generated in both phrase-based and WSCFG-based

translation models. In phrase based translation, distortion is modeled explicitly with a

distortion limit d and a distortion penalty. Models that support non-monotonic decoding

135

0 1a

2x

3b

y

4c

Figure 3.15: Distance-based distortion problem. What is the distance between node 4 and
node 0?

generally include a distortion cost, such as |ai−bi−1−1| where ai is the starting position

of the foreign phrase f i and bi−1 is the ending position of phrase f i−1 (Koehn et al.,

2003). The intuition of this model is that since most translation is monotonic, the cost of

skipping ahead or back in the source should be proportional to the number of words that

are skipped. In hierarchical phrase-based (WSCFG) models, a distortion limit is usually

imposed that prevents the parser from constructing items using anything but the restricted

‘glue rule’ (§3.1.2.2) when the span size is greater than some size d (Chiang, 2007).

With confusion networks, where all paths pass through the same number of nodes,

the distance metric used for the distortion penalty and for distortion limits is well defined;

however, in a non-linear word lattice, it poses the problem illustrated in Figure 3.15.

Assuming the decoding algorithm described above, if c is generated by the first target

word, the distortion penalty associated with ‘skipping ahead’ should be either 3 or 2,

depending on what path is chosen to translate the span [0,3]. In large lattices, where

a single arc may span many nodes, the possible distances may vary quite substantially

depending on what path is ultimately taken, and handling this properly therefore crucial.

Since a distance metric that will constrain as few of the desired local reorderings

as possible on any path is wanted, a function ξ(a,b) is used, which returns the length

136

of the shortest path between nodes a and b. Since this function is not dependent on the

exact path chosen, it can be computed in advance of decoding using an all-pairs shortest

path algorithm (Cormen et al., 1989). Note that in sentences and confusion networks, the

shortest path definition does not change the computed distances since every path between

two nodes is the same length in those restricted word lattices.

Experimental results. The effect of the proposed distance metrics on translation qual-

ity was experimentally determined using Chinese word segmentation lattices (which will

be described in detail in the following section), using both a hierarchical and phrase-based

system. The shortest-path distance metric was compared with a baseline which uses the

difference in node number as the distortion distance. Table 3.13 summarizes the results

of the phrase-based systems. On both test sets, the shortest path metric improved the

BLEU scores. As expected, the lexicalized reordering model improved translation quality

over the baseline; however, the improvement was more substantial in the model that used

the shortest-path distance metric (which was already a higher baseline). Table 3.14 sum-

marizes the results of the experiment comparing the performance of two distance metrics

to determine whether a rule has exceeded the decoder’s span limit. The pattern is the

same, showing a clear increase in BLEU for the shortest path metric over the baseline. For

the remaining experiments reported, the shortest-path distance metric is used.

3.3.3.3 Chinese segmentation experiments

In the Chinese segmentation experiments two state-of-the-art Chinese word segmenters

were used: one developed at Harbin Institute of Technology (Zhao et al., 2001), and one

137

Distance metric MT05 MT06
Difference 29.4 27.9

Difference + lex. reordering 29.7 28.9
Shortest path 29.9 28.7

Shortest path + lex. reordering 30.7 29.9

Table 3.13: Effect of distance metric on phrase-based model performance.

Distance metric MT05 MT06
Difference 30.6 29.6

Shortest path 31.8 30.4

Table 3.14: Effect of distance metric on hierarchical model performance.

developed at Stanford University (Tseng et al., 2005). In addition, a simple character-

based segmentation (Xu et al., 2004) was used. In the remainder of this section, cs stands

for character segmentation, hs for Harbin segmentation and ss for Stanford segmen-

tation. Manual inspection of the segmentations suggested that the Stanford segmenter

favored larger groupings of characters than the Harbin segmenter and both were larger

than the character-based segmentation. Two types of word lattices were constructed: one

that combines the Harbin and Stanford segmenters (hs+ss), and one which uses all three

segmentations (hs+ss+cs). An example of a lattice containing three segmentation types

is given in Figure 3.14. It was observed that the translation coverage of named entities

(NEs) in the baseline systems was rather poor. Since names in Chinese can be composed

of relatively long strings of characters that do not translate individually, when generat-

ing the segmentation lattices that included cs arcs, segmenting NEs of type PERSON, as

identified using a Chinese named-entity tagger (Florian et al., 2004), was avoided.

138

Data and Settings. The systems used in these experiments were trained on the NIST

MT06 Evaluation training corpus, excluding the United Nations data (approximately

950K sentences).33 The corpus was segmented with the three segmenters. For the systems

using word lattices, the training data contained the versions of the corpus appropriate for

the segmentation schemes used in the input. That is, for the hs+ss condition, the training

data consisted of two copies of the corpus: one segmented with the Harbin segmenter and

the other with the Stanford segmenter.34 MERT was used to optimize the parameters of

the translation model using the NIST MT03 test set. The testing was done on the NIST

2005 and 2006 evaluation sets (MT05, MT06).

Experimental results. Using both the FST-based and SCFG-based decoders with word

lattices to deserve selection of a segmentation alternative until decoding time yields sig-

nificant improvements of a single-best baseline where a single segmentation style was

committed to in advance of decoding. The results are summarized in Table 3.15. Us-

ing word lattices improves BLEU scores both in the phrase-based model and hierarchical

model as compared to the single-best segmentation approach. All results using word-

lattice decoding for the hierarchical models (hs+ss and hs+ss+cs) are better than the

best segmentation (ss). For the phrase-based model, substantial gains were obtained us-

ing the word-lattice decoder that included all three segmentations on MT05. The other

results, while better than the best segmentation (hs) by at least 0.3 BLEU points, are not as

large. In addition to the improvements in BLEU, the number of out-of-vocabulary (OOV)

33http://www.nist.gov/speech/tests/mt/
34The corpora were word-aligned independently and then concatenated for rule extraction, as used in the

Czech (§3.3.2.1) and Arabic experiments (§3.3.2.2) morphology experiments above.

139

MT05 MT06
Source BLEU BLEU

cs 28.3 26.9
hs 29.1 28.4
ss 28.9 28.0

hs+ss 29.4 28.7
hs+ss+cs 29.9 28.7

MT05 MT06
Source BLEU BLEU

cs 29.0 28.2
hs 30.0 29.1
ss 30.7 29.6

hs+ss 31.3 30.1
hs+ss+cs 31.8 30.4

(a) Phrase-based model (b) Hierarchical model

Table 3.15: Chinese word segmentation results.

words is improved. For MT06 the number of OOVs in the hs translation is 484. The

number of OOVs decreased by 19% for hs+ss and by 75% for hs+ss+cs.

Example. To qualitatively illustrate the benefits of using word-lattices to combine var-

ious segmentations, consider the example in Table 3.16 using the hierarchical model.

Translations based on Harbin and Stanford segmenters have 3 and 2 untranslated tokens

respectively. The example demonstrates that using word-lattices based on all three seg-

mentations yields a net qualitative gain in the translation output. The word-lattice input

for the translated phrase hard alloy known as ” industrial teeth , is given in Figure 3.14,

where the maximal derivation path selected taken by the decoder is in bold. This exam-

ple makes clear that including the character segmentation in the word-lattice allows the

decoder to take the path 0-1-2-4, and thus to correctly output hard alloy.

3.3.3.4 Arabic segmentation experiments

Segmentation of the input is also an issue when translating Arabic, in addition to the

diacritization issues discussed earlier. Arabic orthography is problematic for lexical and

phrase-based MT approaches since a large class of functional elements (prepositions,

140

cs hard alloy tooth - called ” industrial ” , because the hardness and its very much patience of
high - pressure for cutting tools , instruments and mining and construction of the railway
engineering machinery .

hs ying4 zhi2 he2 jin1 industrial teeth , ” because it is known as ” a very high fruit and nai4
mo2 used to qie1 xue1 tools , and high - pressure equipment and mining and engineering
machinery .

ss ying4 zhi2 alloy industrial teeth , ” because it is known as ” a very high hardness and nai4
mo2 xing4 used for building high - pressure - cutting machines tools , instruments and
mining and engineering machinery .

hs+ss ying4 zhi2 he2 jin1 alloy known as ” industrial teeth , ” because it is very high and hardness
nai4 mo2 hardness of for - cutting machines tools , high - pressure equipment building and
mining and engineering machinery .

hs+ss+cs hard alloy known as ” industrial teeth , due to the hardness of high and durable grinding
nature for cutting tools , high - pressure equipment and the development of mining and the
building of roads , engineering machinery .

reference hard alloy is called ” industrial teeth ” . due to its high hardness and durability , it is used
for cutting tools , high-tension tools as well as for mining and road-building machinery .

Table 3.16: Example translations using the hierarchical model

pronouns, tense markers, conjunctions, definiteness markers) are attached to their host

stems. Thus, while the training data may provide good evidence for the translation of a

particular stem by itself, the same stem may not be attested when attached to a particular

conjunction. For example, the word sywf (swords), could appear in a form prefixed by

w- (and), l- (for), and with a suffix -hm (their), appearing as wlsywfhm, which, although

composed of common elements, is infrequent in this particular context.

As with Chinese word segmentation and the morphological simplifications consid-

ered above, the usual solution is to commit to the best guess as to the segmentation, in

advance of decoding. This is typically done by performing a morphological analysis of

the text (where it is often ambiguous whether a piece of a word is part of the stem or

merely a neighboring functional element), and then making a subset of the bound func-

tional elements in the language into freestanding tokens. Figure 3.16 illustrates the unseg-

mented Arabic surface form as well as the segmented variant. Habash and Sadat (2006)

showed that a limitation of this approach is that as the amount and variety of training

141

Form
surface wxlAl ftrp AlSyf kAn mEZm AlDjyj AlAElAmy m&ydA llEmAd .
segmented w- xlAl ftrp Al- Syf kAn mEZm Al- Djyj Al- AElAmy m&ydA l- Al- EmAd .
(English) During the summer period , most media buzz was supportive of the general .

Figure 3.16: Example of Arabic segmentation driven by morphological analysis.

data increases, the optimal segmentation strategy changes: more aggressive segmentation

results in fewer OOV tokens, but evaluation metrics indicate lower translation quality,

presumably because the smaller units are being translated less idiomatically.

As was the case with Chinese, segmentation lattices allow the decoder to make deci-

sions about what granularity of segmentation to use sub-sententially. Furthermore, since

morphological analysis is an inherently ambiguous process, word lattices can effectively

capture the resulting ambiguity.

Lattices were constructed from an unsegmented version of the Arabic test data and

generated alternative arcs where clitics as well as the definiteness marker and the future

tense marker were segmented into tokens. The Buckwalter morphological analyzer was

used to perform the necessary morphological analysis, and disambiguation was performed

with a unigram model trained on the Penn Arabic Treebank.

Data preparation. For the Arabic segmentation lattice experiments the parallel Arabic-

English training data provide for the NIST MT08 evaluation was used. The sentences con-

taining n-grams overlapping with the test set were selected using a subsampling method

proposed by Kishore Papineni (personal communication), which reduced the amount of

training data that the system must process without negatively affecting the quality of the

system on the test set of interest. A 5-gram English LM trained on 250M words of En-

142

MT05 MT06
Source BLEU BLEU

SURFACE 46.8 35.1
MORPH 50.9 38.4

MORPH+SURFACE 52.3 40.1

MT05 MT06
Source BLEU BLEU

SURFACE 52.5 39.9
MORPH 53.8 41.8

MORPH+SURFACE 54.5 42.9
(a) Phrase-based model (b) Hierarchical model

Table 3.17: Arabic morpheme segmentation results

glish training data was used. The NIST MT03 test set was used as development set for

optimizing the model weights using MERT. Evaluation was carried out on the NIST 2005

and 2006 evaluation sets (MT05, MT06).

Experimental results. Results are presented in Table 3.17. Using word-lattices to com-

bine the surface forms with morphologically segmented forms substantially improves

BLEU scores both in the phrase-based and hierarchical models compared to a baseline

where a single segmentation was used.

3.4 Summary

This chapter has demonstrated some practical benefits of using input structured as a

WFST to represent alternative source variants in statistical machine translation when

compared to systems that must select a single, unambiguous sentence for input. A va-

riety of sources of ambiguity were incorporated into the model to improve translation,

some of which have been previously considered in considerable detail (spoken language

translation), and others of which are novel (preprocessing decisions). Both lead to im-

provements. These benefits were available using both a phrase-based (WFST) and hier-

archical phrase-based (WSCFG) translation models, suggesting that the generic weighted

143

set framework described in the previous chapter has value as a useful abstraction for de-

scribing transduction pipelines.

144

4 Learning from ambiguous labels

It is wrong always, everywhere, and for everyone, to believe anything upon

insufficient evidence.

–W. K. Clifford

When we make inferences based on incomplete information, we should draw

them from that probability distribution that has maximum entropy permitted

by the information we do have.

–E. T. Jaynes

In the previous chapter, I demonstrated that it is beneficial to utilize a weighted set of

strings, rather than single strings, as the input into a statistical machine translation system

for a number of quite disparate problems. I turn now to another situation where it is

customary to assume a single value, but where a set or distribution can also be more

appropriate: in the reference annotations used in supervised learning.1

Supervised learning is widely used in natural language processing applications.

Rather than burdening the developer with the task of manually writing rules for classi-

fication, supervised learning uses training data (consisting of pairs of inputs, from a set

1This chapter is a revised and expanded presentation of material published originally in Dyer (2009).

145

X , with their desired outputs or labels, from a set Y), to induce a model that will (hope-

fully) generalize and correctly transform novel inputs (novel, but still from X) into the

correct output (in Y). Training data usually consists of pairs of a single element from

X (the input) with a single element from Y . In this chapter, I introduce techniques for

supervised learning when there is ambiguity about the label for particular inputs. That is,

I consider the case where training data consists of pairs of a single element from X and a

subset of elements in Y .

Broadly, two kinds of label ambiguity can be distinguished. The first, which is the

primary focus of this chapter, is often called multi-label classification and refers to the

situation where there may be multiple correct annotations for a single input (Tsoumakas

and Katakis, 2007).2 For example, in document classification, a single document may be

assigned to several categories (as an illustration, an article about the Apple iPad could be

classified as belong to both the TECHNOLOGY and BUSINESS categories by a document

classification system that supports those categories). Machine translation can also be

understood as a kind of multi-label classification: there may be many target language

sentences that are translations of a source language sentence. The second source of label

ambiguity arises when learning from unreliable or noisy annotators. In this case, there is

still only a single correct annotation, but the training data are noisy, so a particular training

instance may be inaccurately labeled (Dawid and Skene, 1979; Dredze et al., 2009; Jin

and Ghahramani, 2002). While the problem of learning from noisy annotations will not

be the focus, the techniques developed in this chapter for learning multiple classes are

2This is not to be confused with multi-class classification, where a single correct class must be selected
from among more than 2 classes.

146

closely related to work that has been done for learning from noisy annotation, and could

be utilized for this purpose as well. I return to this topic in the discussion of future work

(§4.6).

In the previous chapter, I discussed in some depth one technique for supervised

learning, MERT (§3.1.4). While MERT has considerable value for some applications, and

can even make use of multiple references (this depends on whether the error function

can utilize multiple references when evaluating a candidate prediction), MERT crucially

optimizes the performance only of the maximum weight path in the model, otherwise

ignoring the scores of the other candidates entirely. As a result, since MERT only cares

which candidate has the highest weight, the difference in scores among alternative can-

didates may be arbitrarily large. Thus, it is problematic to gauge the value of multiple

predictions under models trained with MERT: since I would like to predict multiple labels

from the model, the model should be informative for all paths.3 I therefore turn to a differ-

ent model as the starting point, conditional random fields (CRFs; Lafferty et al. (2001)),

a probabilistic model whose value is meaningful (as a conditional probability) for every

prediction. Since the standard CRF training objective is defined in terms of unambigu-

ous labels, I introduce a technique for generalizing it to multiple labels by positing that a

specific label is selected by a latent variable.

As an example of a learning problem where inputs have multiple correct labels, I

apply the model to the problem of compound word segmentation for machine translation.

Using the multi-label CRF training objective, a model is learned that produces sets of

3Despite this limitation, multiple outputs from MERT-trained models are sometimes used. However, it
is generally necessary to learn a secondary scaling factor to make sense of the scores (Tromble et al., 2008).

147

segmentations (which I encode as a lattice), rather than single segmentations. Note that

this is a model that produces, as its output, lattices of the kind that served as input to the

systems described in the previous chapter— see Figure 1.1 in the introduction.

The chapter is organized as follows. First, I review CRFs and their training (§4.1).

I then show how they can be extended to use multiple references during training, and

trained particularly efficiently when the reference labels are encoded as lattices (§4.2). I

then discuss the word segmentation problem, in particular as it applies as a preprocessing

step for machine translation (§4.3). I then introduce the concept of a reference segmenta-

tion lattice (§4.3.2), which is a lattice encoding all correct segmentations of the input.4 I

report the results of an experimental evaluation using reference lattices to train a model

for compound segmentation, evaluating the model both in terms of the segmentations

learned and on translation tasks (§4.4). I include a brief discussion of related work (§4.5)

and then outline future work, focusing in particular on an alternative learning criterion

that has more attractive properties than the one used in the rest of the chapter (§4.6).

4.1 Conditional random fields

Since they will form the basis of the multi-label model, I begin with a review of con-

ditional random fields (CRFs). CRFs are discriminatively trained undirected models for

structured prediction, in which typically only a single correct label is provided for each

training instance (Lafferty et al., 2001). They define a graphical structure relating el-

ements of an input structure to an output structure. In particular, I will focus on two

4As with translation, where there may be multiple correct translations, segmentation is a task where
there are multiple correct segmentations.

148

B C C B C C C

t o n b a n dx

y

word word

t o n b a n dx

y

Markov CRF for word segmentation (Tseng et al., 2005):

Semi-Markov CRF for word segmentation (Andrew, 2006; this work):

word 1 word 2

word 1 word 2

Figure 4.1: Two CRF segmentation models: a fully Markov CRF (above) and a semi-
Markov CRF (below).

specific kinds of structures: sequence models, where input and label sequences have the

same length (fully-Markov linear CRFs; Sha and Pereira (2003)) and models where la-

bel sequences may be shorter than the input sequence (semi-Markov or segmental CRFs;

Sarawagi and Cohen (2004)). Figure 4.1 shows examples of both, as they are applied to

the word segmentation problem.5

CRFs are specified by a fixed vector of m global real-valued feature functions

~H(x,y)= 〈H1(x,y),H2(x,y), . . . ,Hm(x,y)〉, where x and y are input and output sequences,

5Figure 4.1 is not a plate diagram; it simply shows example assignments of values to random variables
in a CRF. Each structure would correspond to a particular posterior probability.

149

respectively, and Hk : X ×Y → R. CRFs are parameterized by a vector of m feature

weights Λ = 〈λ1,λ2, . . . ,λm〉 ∈ Rm. CRFs define a conditional probability distribution of

labels y given an input x as follows:

p(y|x;Λ) =
exp∑k λk ·Hk(x,y)

Z(x;Λ)
where Z(x;Λ) = ∑

y′
exp∑

k
λk ·Hk(x,y′) (4.1)

The function Z(x;Λ),6 called the partition function, ensures that the conditional probabil-

ity distribution is properly normalized. Note that it only depends on the input x, not the

prediction y. As a result, to infer the prediction ŷ with the maximum posterior probabil-

ity, it is not necessary to compute this value; however, it is required in training (discussed

below).

CRFs further stipulate that every feature function Hk(x,y) must additively decom-

pose into sums of local feature functions hk over the cliques C in the graph G :

Hk(x,y) = ∑
C@G

hk(y|C ,x)

Where y|C are the components associated with subgraph C. Therefore, in the fully-

Markov linear CRF, the cliques are just the nodes and edges between adjacent nodes

in a graph. In such models, feature functions can be rewritten as follows:

Hk(x,y) =
|x|

∑
i=1

hk(yi,yi−1,x)

6The symbol Z is short for the (appropriately) German compound word Zustandssumme, meaning the
sum over states; this notation derives from statistical physics, where it is used to relate various thermody-
namic quantities.

150

In the semi-Markov case, a prediction node yi has a start time si and a duration di, such

that di > 0 for all i and |x| = ∑
|y|
i=1 di and s1 = 1 and si = si−1 +di−1. The global feature

functions decompose as follows:

Hk(x,y) =
|y|

∑
i=1

hk(yi,yi−1,si,di,si−1,di−1,x)

Fully-Markov CRFs can be interpreted as semi-Markov models where di = 1 for all i.

Conveniently, for a given x, the posterior distribution of semi-Markov CRFs (and

therefore also fully Markov CRFs) can be represented by an acyclic WFST (Lafferty et al.,

2001). In the WFST representation, the network is organized such that the predicted labels

occur on the edges (whereas in the usual undirected graphical model representation, the

predicted values are nodes), and states correspond to particular unique settings of cliques

in the graph. Because each state corresponds to the settings of all variables (nodes) in a

clique, the size of the WFST is exponential in the size of the clique in nodes. The weight

of a path from source to final states produces a label sequence y and its weight is the

numerator of Equation (4.1), and the global features decompose in terms of transitions in

the WFST. Figure 4.2 shows a WFST encoding of the fully-Markov CRF from Figure 4.1,

which predicts a sequence of B’s and C’s of length 7, given the input x = tonband (the

meanings of the labels are discussed below in §4.1.2).

Fully- or semi-Markov? Since semi-Markov CRFs offer more flexibility than fully-

Markov CRFs, it is natural to ask why fully-Markov CRFs would ever be used in sequence

modeling. First, in applications where the predicted sequence should always be equal

151

B B B B B B B

C C C C C

C C C C

B B B B B C

Figure 4.2: A WFST encoding (weights not shown) of the posterior distribution of the
CRF from the upper part of Figure 4.1. The highlighted path corresponds to the variable
settings shown in the example.

in length to the input sequence, e.g. part-of-speech tagging, semi-Markov CRFs have

little value. Second, fully-Markov CRFs can be somewhat more efficient than their semi-

Markov counterparts, although in general the overhead is not substantial. Finally, with

semi-Markov CRFs, it is slightly easier to define features that will be extremely sparse,

making very large amounts of training data necessary. However, in general, semi-CRFs

are indeed a much more flexible representation.

4.1.1 Training conditional random fields

Conditional random fields are trained using the maximum conditional likelihood training

criterion or maximum a posteriori (MAP) criterion. I review these here. Given a set of

training data D = {〈x j,y j〉}`j=1, the maximum conditional likelihood estimator (MCLE)

can be written as follows.

Λ
∗
MCLE = argmax

Λ

|D|

∏
j=1

p(y j|x j;Λ)

= argmin
Λ
−
|D|

∑
j=1

log p(y j|x j;Λ) (4.2)

152

Supervised learning can be formalized as the minimization of a particular training ob-

jective L , which is a function of the model parameters Λ and the training data. From

Equation (4.2), the MCLE training objective is

LMCLE(Λ) =−
|D|

∑
j=1

log p(y j|x j;Λ) .

Substituting the CRF definition of the condition probability from Equation (4.1) yields

LMCLE(Λ) =−
|D|

∑
j=1

(
∑
k

λk ·Hk(y j,x j)− logZ(x j;Λ)

)

Since LMCLE(Λ) is globally convex (Lafferty et al., 2001), it can be minimized by solving

to find where the gradient ∇LMCLE(Λ) = 0. The gradient ∇LMCLE(Λ) is:

∂LMCLE

∂λk
=
|D|

∑
j=1

 Hk(y j,x j)︸ ︷︷ ︸
empirical feature value

−∑
y′

p(y′|x j;Λ)Hk(y′|x j)︸ ︷︷ ︸
expected value of Hk in model

 (4.3)

The right-hand term in this summation, the expected value of Hk under the model, is

the derivative of the log partition function with respect to λi. The derivation requires

only basic algebra, but since it does not offer any insight, I omit it here. For a detailed

derivation, see Smith (2004).

Unfortunately, ∇LMCLE(Λ) = 0 has no analytic solution; however, numerical meth-

ods work quite well (Sha and Pereira, 2003). For the experiments reported below, the

quasi-Newtonian method called limited-memory (L-) BFGS is used (Liu and Nocedal,

1989). It should also be noted that the form of the gradient has a natural interpretation: it

153

is the difference between the feature function’s value in the training data (the ‘empirical’

expectation of the feature function) and the expected value of the feature in the model’s

posterior distribution. This means the gradient is zero when every feature’s expectation

under the model (labeling the input half of the training data) matches the feature’s empir-

ical expectations (that is, the feature’s average value in the full training data).

Before concluding the introduction to CRFs, it is worth remarking that maximum

likelihood estimators typically overfit the training data. Therefore, it is often advanta-

geous to define a prior distribution over the space of models, p(Λ), and solve for the

maximum a posteriori (MAP) estimator, as follows.

Λ
∗
MAP(Λ) = argmax

Λ

(
p(Λ)

|D|

∏
j=1

p(y j|x j;Λ)

)

= argmin
Λ

(
− log p(Λ)−

|D|

∑
j=1

log p(y j|x j;Λ)

)

Using a Gaussian prior with mean µ (usually = 0) and a diagonal covariance matrix with

elements σ2, yielding a new objective, which is still convex (Chen and Goodman, 1996):

LMAP(Λ) =−∑
k

(λk−µk)
2

2σ2 −
|D|

∑
j=1

(
∑
k

λk ·Hk(y j,x j)− logZ(x j;Λ)

)
(4.4)

The corresponding gradient ∇LMAP(Λ) is:

∂LMAP

∂λk
=

λk−µk

σ2︸ ︷︷ ︸
prior penalty

−
|D|

∑
j=1

 Hk(y j,x j)︸ ︷︷ ︸
empirical feature value

− ∑
y′

p(y′|x j;Λ)hk(y′|x j)︸ ︷︷ ︸
expected feature value in model

 (4.5)

154

With the fully-Markov linear CRFs and the semi-CRFs used here, the forward-backward

algorithm can be used to compute, in polynomial time, the log partition function logZ(x;Λ)

and the feature expectations under the current model parameters. The empirical expec-

tations can be computed once just by iterating over the training examples and evaluating

the feature functions on the pairs.

The MAP estimator with a Gaussian prior with µ = 0 indicates that models should

not have too much weight assigned to any feature. This means that no single feature

can come to dominate. This improves the quality of the models learned since it prevents

features that only accidentally correlate strongly with various labels in the training data

from getting too much weight. Intuitively, the variance parameter σ determines how

strictly the prior is enforced. Usually, this value is tuned on a held-out development set.

4.1.2 Example: two CRF segmentation models

As an illustration of the applications of CRFs, consider these two closely related models,

one fully-Markov model and one semi-Markov model used for word segmentation. Tseng

et al. (2005) introduce a fully-Markov CRF segmenter for Chinese text. Their model

defines the probability of every segmentation y, given an unsegmented input word x,

where xi is the ith character of the input. Every xi is classified with a yi as being the

start of a new word (B = BEGIN) or the continuation of one (C = CONTINUE), that is,

yi ∈ {B,C}. The graphical structure of this model is shown for a German compound

segmentation example in the upper part of Figure 4.1. In the example, the string tonband

is being segmented into two words ton (audio) and band (tape). Although this model

155

attains very good performance in comparison to many models on a Chinese segmentation

task, fully-Markov CRFs are inherently limited for the word segmentation task since they

are incapable of using features that are sensitive to the words they are predicting, unless

the words are shorter than the Markov window used. This limitation arises because the

model is restricted to only compute features that are functions over cliques in the graph—

which in this case are just adjacent pairs of characters!

Andrew (2006) suggests improving this model by using a semi-CRF where the

states predicted encompass the entire word segment predicted. This enables using features

of the words predicted (such as unigram and bigram features), regardless of the length of

the segments. The graphical structure of Andrew’s model is shown in the lower part of

Figure 4.1.

4.2 Training CRFs with multiple references

As seen in the previous section, the standard training objective of CRFs is formulated in

terms of a single labels for each training instance. However, when the training data con-

sists of sets of correct labels, i.e., D = {〈x j,Y j〉}`j=1, where Y j ⊆ Y , the training criterion

must be altered. In particular, I use the EM ‘trick’ (Dempster et al., 1977) of summing

over the values in the reference set to compute the marginal conditional likelihood (this

treats one of them as the latent ‘true’ answer):

Pr(Y |x) = ∑
y′∈Y

p(y′|x;Λ)

156

The maximum marginal conditional likelihood estimator (MMCLE) objective can there-

fore be written as follows:

LMMCLE(Λ) = − log

(
D

∏
j=1

∑
y′∈Y j

exp∑k λk ·Hk(x,y′)
Z(x;Λ)

)

= −
D

∑
j=1

log ∑
y′∈Y j

exp∑
k

λk ·Hk(x j,y′)︸ ︷︷ ︸
=Z(x j,Y j;Λ)

− logZ(x j;Λ)

= −
|D|

∑
j=1

logZ(x j,Y j;Λ)− logZ(x j;Λ) (4.6)

I denote the summation over the possible labels in Y using Z(x,Y ;Λ) in Equation (4.6)

since this value has the exact same structure as the regular partition function, Z(x;Λ),

only it is restricted to sum over the settings of the CRF that match an element in Y . The

gradient can has a similar form:

∂LMMCLE

∂λk
=
|D|

∑
j=1

 ∑
y′∈Y j

p(y′|x j;Λ)Hk(y′|x j)︸ ︷︷ ︸
empirical feature expectation

−∑
y′

p(y′|x j;Λ)Hk(y′|x j)︸ ︷︷ ︸
expected feature value in model

=
|D|

∑
j=1

(
Ep(y′|x j,Y j;Λ)[Hk(x j,y′)] − Ep(y′|x j;Λ)[Hk(x j,y′)]

)
(4.7)

Equation 4.7 is quite similar to the original statement of the gradient in the case of unam-

biguous inputs, given in Equation 4.3. However, in this case, the empirical feature values

have been replaced with an expectation of the feature values, weighted by the posterior

distribution of over segmentations given the model. Unfortunately, unlike the standard

157

CRF objective, LMMCLE(Λ) is not globally convex in the model parameters, and therefore

gradient descent will only find a local minima. However, in the case of the experiments

discussed below, a significant initialization effect is not observed.

The multi-reference model is closely related to the discriminative latent variable

models that have been utilized for many different tasks (Blunsom et al., 2008a,b; Clark

and Curran, 2004; Dyer and Resnik, 2010; Koo and Collins, 2005; Petrov and Klein, 2008;

Quattoni et al., 2004; Sun et al., 2009). However, in this previous work, the latent vari-

ables were used for modeling convenience (that is, they were nuisance variables), rather

than as ambiguous alternative prediction possibilities. Dredze et al. (2009), who were

exploring strategies for dealing with ambiguous, possibly incorrect, training labels, inde-

pendently derived a model that is identical to this, except each label in the reference set

has a prior probability of correctness (in their experiments, the prior correctness probabil-

ity was estimated by annotator agreement). With a uniform prior, their model is identical

to ours.7 However, while the models are closely related, they explicitly sum over every

reference in Y . In the following section, I show how these references can be compactly

encoded in an FST and the summation over all paths can be efficiently computed using

dynamic programming.

Efficient training with reference lattices. It is possible to compactly encode a very

large number of correct annotations if the label set Y is encoded using reference lattices,

which compactly encode many alternatives.8 This encoding permits the summation over

7The two papers introducing this training strategy, Dyer (2009) and Dredze et al. (2009), were published
concurrently and independently.

8In the experiments below, the reference lattices will be segmentation lattices (§4.3.2), but in principle
the lattices could encode any kind of labels for any task.

158

the labels that is encoded to be carried out efficiently using a dynamic programming

algorithm.

The key to efficient training relies on the fact that the posterior distribution of any

fully- or semi-Markov sequential CRF can be encoded as an acyclic WFST (§4.1). As de-

scribed aboe, during standard CRF training, a summation over multiple variable settings

is only necessary when computing the denominator, Z(x;Λ), of the probability distribu-

tion (and the associated feature expectations under the model, for the gradient). For this,

the INSIDE algorithm on the WFST encoding of the CRF can be used. Since the fea-

ture functions decompose over the transitions in the state machine, the INSIDEOUTSIDE

algorithm wll compute their expected value under the model.

With multiple references, the numerator also involves a summation (as does the

corresponding term in the gradient). However, if the references, Y , are themselves en-

coded as a WFST, the numerator can be computed by composing the WFST-encoding of

the posterior distribution of the CRF with Y , and then running the INSIDE and INSIDE-

OUTSIDE algorithms to compute the required quantities. Figure 4.3 gives the pseudocode

for training.

Intuitively, this training procedure can be understood as iteratively moving proba-

bility mass from paths in the CRF posterior lattice that are not in the reference lattice to

those paths that are found in the reference.

159

1: function OBJECTIVEANDGRADIENT(D,Λ,h(·))
2: LMMCLE← 0
3: ∇LMMCLE← 0 . m dimensions
4: for all 〈x,Y 〉 ∈D do . Y is a FST encoding the reference lattice for x
5: T ← BUILDCRFASWFST(x,Λ,h(·)) . T encodes all segs. (see Figure 4.2)
6: logZ(x;Λ)← INSIDE(T, log semiring)
7: Ep(y′|x)[h(x,y′)]← INSIDEOUTSIDE(T, log semiring)
8: T ← T ◦Y . Compose T with the reference Y
9: logZ(x,Y ;Λ)← INSIDE(T, log semiring)

10: Ep(y′|x,Y)[h(x,y′)]← INSIDEOUTSIDE(T, log semiring)
11: LMMCLE← LMMCLE + logZ(x,Y ;Λ)− logZ(x;Λ)
12: ∇LMMCLE← ∇LMMCLE +Ep(y′|x,Y)[h(x,y′)]−Ep(y′|x)[h(x,y′)]
13: return 〈LMMCLE,∇LMMCLE〉

Figure 4.3: Pseudo-code for training a segmentation CRF with reference lattices.

4.3 Word segmentation and compound word segmentation

As an application of training CRFs with multiple references encoded in a lattice, I turn

to the problem of compound word segmentation for machine translation. I begin with an

overview of the word segmentation problem in general.

Word segmentation is the problem of determining where in a sequence of symbols

from a finite alphabet Σ one morpheme ends and the next begins, assuming morphemes

are themselves composed of sequences of one or more symbols from Σ (in text process-

ing, these are letters; in speech segmentation these may be phones or phonemes). More

formally, given a language L built of strings of words from lexicon ∆, it is assumed that

every word w consists of one or more letters from a finite alphabet Σ of letters, that is,

w ∈ Σ+. Word segmentation is the task of breaking a string x = σ1σ2 . . .σ` ∈ Σ∗ into a

list of k words w1,w2, . . . ,wk ∈ ∆∗ such that w1w2 . . .wk = σ1σ2 . . .σ`. For example, the

German compound word tonbandaufnahme, meaning audio cassette recording, consists

160

of at least 3 morphemes: ton (audio), band (cassette), and aufnahme (recording).9

The problem of recovering the segmentation into words of a sequence of tokens in

Σ is challenging. While Σ (the phonemic inventory or alphabet of a language) is finite

and often quite small, ∆ (the lexicon) may be quite large and is, in fact, may not be finite

(productive word creation processes, like derivational morphology and borrowing from

other languages may allow for the creation of an unbounded number of new morphemes).

More serious still, determining the content of the lexicon is difficult: does a sequence

of tokens correspond to multiple words or just a single (long) one? Even with a ‘gold-

standard’ lexicon, there may be multiple valid ways of decomposing a sequence of words

that is consistent with the lexicon. Models that use features of the words, phonology of

the language, and even semantics to adequately resolve all word segmentation challenges

are therefore necessary.

4.3.1 Compound segmentation for MT

As demonstrated in the previous chapter (§3.3.3), how the input to a machine translation

system is segmented can substantially influence the quality of the translations it produces.

In the experiments in this chapter, I focus on the translation into English from languages

such as German, which exhibit productive compounding, and where the orthography does

not indicate breaks between constituent morphemes. These compound words pose partic-

ular problems for statistical translation systems because translation systems do not typi-

cally consider the internal structure of words; however, the creation of these words is a

9We say ‘at least 3 morphemes’ because aufnahme can arguably be decomposed into two morphemes
auf and nahme; however, the semantics do not decompose.

161

standard part of language use and a translation system that does not deal with them will

be inadequate for most applications. This problem is widely known, and the conventional

solution (which has been shown to work well for many language pairs) is to segment

compounds into their constituent morphemes, as a source preprocessing step, using either

morphological analyzers or empirical methods, and then to translate from this segmented

variant (Dyer et al., 2008; Koehn et al., 2008; Yang and Kirchhoff, 2006).

But into what units should a compound word be segmented? When viewed as a

stand-alone task, the goal of a compound segmenter is a segmentation of the input that

matches the linguistic intuitions of native speakers of the language. However, for MT, fi-

delity to linguistic intuition is less important. Instead, segmentations that produce correct

word-by-word translations are considered appropriate (Ma et al., 2007). Unfortunately,

determining the optimal segmentation for MT is challenging, often requiring extensive

experimentation and frequently disagreeing with linguistic intuitions about how best to

segment input (Chang et al., 2008; Habash and Sadat, 2006; Koehn and Knight, 2003).

Now, as seen in Chapter 3, translation quality could be improved by using segmen-

tation lattices which combine the output from multiple segmenters, compared to systems

where only a single segmenter was used. A further advantage of this approach is that the

problem of having to identify the best single segmentation can be sidestepped since all

segmentations are used. Unfortunately, the way segmentation lattices were constructed

the previous chapter required multiple segmenters that behaved differently on the same

input. However, only a few languages (for example, Arabic and Chinese, the example

source languages from the previous chapter) have had such a wealth of resources devel-

oped for them, making the technique of limited utility. I therefore would like to model

162

segmentation lattices directly, rather than relying on the good fortune of having multiple

systems with different behaviors that ‘accidentally’ produce segmentation lattices.

In this chapter, I solve the problem of generating segmentation lattices using su-

pervised learning: for a training set of example compound words, an annotator provides

reference segmentation lattices, whose paths are all possible segmentations of the word.

From the pairs of unsegmented inputs and reference segmentation lattices the model

learns how to generate novel lattices like them for words unseen during training. I now

describe reference segmentation lattices as a means of representation alternative possible

good segmentations (for the purposes of translation) of an input which I will then use to

train a CRF segmentation model using the training algorithm described above (§4.2).

4.3.2 Reference segmentation lattices for MT

Figure 4.4 shows segmentation lattices for two typical German compound words, whose

paths are compatible with the German lexicon (with English glosses) shown in Table 4.1.

While these two words are structurally quite similar, translating them into English is most

straightforward when they have been segmented differently. In the upper example, ton-

bandaufnahme can be rendered into English by following 3 different paths in the lat-

tice and translating the words independently, ton/audio band/tape aufnahme/recording,

tonband/tape aufnahme/recording, and tonbandaufnahme/tape recording. In contrast,

wiederaufnahme (English: resumption) is most naturally translated correctly using the

unsegmented form, even though in German the meaning of the full form is a composition

163

tonband aufnahme

ton band auf nahme

wieder aufnahme

wie der auf nahme

tonbandaufnahme

wiederaufnahme

Figure 4.4: Segmentation lattice examples. The dotted structure indicates linguistically
implausible segmentation that might be generated using dictionary-driven approaches.

Table 4.1: German lexicon fragment for words present in Figure 4.4.

German English
auf on, up, in, at, ...
aufnahme recording, entry
band reel, tape, band
der the, of the
nahme (misspelling of nähme) took (3P-SG-CONJ)
ton sound, audio, clay
tonband tape, audio tape
tonbandaufnahme tape recording
wie how, like, as
wieder again
wiederaufnahme resumption

of the meaning of the individual morphemes.10 I define a reference segmentation lattice

to be a lattice containing only paths that lead to ‘compositional’ translations like this.

It should be mentioned that phrase-based models can translate multiple words as a

unit, and therefore capture non-compositional meaning. Thus, by default, if the training

10The English word resumption is likewise composed of two morphemes, the prefix re- and a kind of
bound morpheme that never appears in other contexts (sometimes called a ‘cranberry morpheme’), but the
meaning of the whole is idiosyncratic enough that it cannot be called compositional.

164

tonband aufnahme

ton band

wiederaufnahme

Figure 4.5: Manually created reference lattices for the two words from Figure 4.4. Al-
though only a subset of all linguistically plausible segmentations, each path corresponds
to a plausible segmentation for word-for-word German-English translation.

data is processed such that, for example, aufnahme, in its sense of recording, is seg-

mented into two words, then more paths in the lattices become plausible translations.

However, using a strategy of ‘over segmentation’ and relying on phrase models to learn

the non-compositional translations has been shown to degrade translation quality signifi-

cantly (Habash and Sadat, 2006; Xu et al., 2004). I thus desire lattices containing as little

oversegmentation as possible.

In summary, the reference segmentation lattice should be a lattice where every path

corresponds to a reasonable word-for-word direct translation into the target language.

Figure 4.5 shows an example of the reference lattice for the two words I just discussed.

4.4 Experimental evaluation

In this section, I describe a compound segmentation model that is trained optimizing

the multi-label CRF objective (introduced in §4.2), using reference lattices as defined

in the previous section. I report the promising results of an intrinsic evaluation of the

segmentations, as well as an extrinsic evaluation, where the segmentation model is used

165

to generate inputs to a statistical machine translation system. In the extrinsic evaluation,

not only does the model perform well in German, the language it was trained in, but it

performs well when used with languages with similar compounding processes, Hungarian

and Turkish.

4.4.1 Segmentation model and features

In the introduction to CRFs above, I discussed two possibilities for modeling word seg-

mentation with CRFs: either using a fully-Markov CRF and predicting a word break or

continuation at each position in the word, or using a semi-Markov CRF and modeling seg-

ments. Since the test language is German, whose compound segments are typically many

characters in length and where previous work has tended to use features of the predicted

segments to make segmentation decisions, I make use of the semi-Markov alternative.

Feature functions. Feature engineering is of crucial importance for any model. I sum-

marize the requirements for the ones used in model here. First, I will favor ‘dense’, rather

than sparse features, since this will minimize the amount of training data required.11

Second, I will favor linguistically motivated features, such as phonotactic probability,

which tend to be cross-linguistically meaningful. Because the model uses cross linguis-

tic features that should be well defined in most languages with productive compounds,

the model (which is trained on German compound words) will be evaluated on two other

compounding languages, Hungarian and Turkish. Finally, for computational tractability,

output contextual features (that is, features that depend on previous decisions made in

11It is quite common to use large numbers of sparse binary features with CRFs, such as features indicating
the presence of specific words or n-grams.

166

the model)—the model will make its predictions using only local information about the

segment being hypothesized.

Table 4.2 lists the features used in two variants of the compound segmentation

model, one trained to deal specifically with some relatively unique processes in German

compounds and another that (while likewise trained on German), ignores those processes.

An explanation of the features is as follows. yi is the ith hypothesized segment with length

|yi|. It starting at position si in x. I include features that depend on the relative frequency

of a hypothesized segment in a large monolingual corpus, f (yi), which builds on prior

work of (Koehn and Knight, 2003) that relied heavily on the frequency of the hypothe-

sized constituent morphemes in a monolingual corpus. Binary predicates evaluate to 1

when true and 0 otherwise. f (yi) is the frequency of the token yi as an independent word

in a large monolingual corpus. φ(#|xsi · · ·xsi+4) is a proxy for phonotactic probability: it is

the probability of a word start preceding the letters xsi · · ·xsi+4, as estimated by a 5-gram

character model trained in the reverse direction on a large monolingual corpus.12

Since German compound morphology inserts small ‘functional’ morphemes be-

tween the some constituent words inside compounds, the model permits the strings s,

n, and es (the so-called Fugenelemente) to be deleted between words in the ‘German’

model. Each deletion fired a count feature (listed as fugen in the table). Figure 4.6 shows

an example of a noun-noun compound that has an s placed between the two constituent

nouns.

Analysis of errors in development data indicated that the segmenter would periodi-

12In general, this feature helps avoid situations where a word may be segmented into a frequent word and
then a non-word string of characters since the non-word typically violated the phonotactics of the language
in some way.

167

unabhängigkeitserklärung

unabhängigkeit s erklärung

noun nounFugenelement

INDEPENDENCE DECLARATION

Figure 4.6: An example of a Fugenelement in the German word Un-
abhängigkeitserklärung (English Declaration of Independence), where s is inserted
as part of the compounding process but does not occur with the words when they occur
in isolation.

Table 4.2: Features and weights learned by maximum marginal conditional likelihood
training, using reference segmentation lattices, with a Gaussian prior with µ = 0 and
σ2 = 1. Features sorted by weight magnitude.

Feature German all-language
f (yi)> 0.005 -2.98 -3.31

†yi ∈N (= list of ‘bad’ segments) -2.32 –
|yi| ≤ 4 -1.02 -1.18
†fugen -0.71 –

|yi| ≤ 10, f (yi)> 2−10 0.60 -0.82
|yi| ≥ 12 -0.58 -0.79√

|yi| 0.58 -0.64
logφ(#|xsixsi+1xsi+2xsi+3) 0.46 2.11

segment penalty 0.33 2.04
2−10 < f (yi)< 0.005 -0.28 -0.45

f (yi)> 0 0.23 3.64
log f (yi) -0.26 -0.36
f (yi) = 0 0.10 -1.09
|yi|2 0.038 0.018

cally propose an incorrect segmentation where a single word could be divided into a word

and a non-word consisting of common inflectional suffixes. To address this, an additional

feature was added that fired when a proposed segment was one of a set N of 30 non-

words that were observed to occur frequently in the development set. The weights shown

in Table 4.2 are those learned by MAP training criterion summing over all paths in the

reference segmentation lattices. German-specific features are indicated with †.

168

4.4.2 Training data

There are two separate sets of training and test data, one for the segmentation component,

which is the focus of the learning innovation in this chapter, and one for the translation

component, which exploits the segmentation lattices generated as input to the translation

system (§3.2).

Segmentation training data. Segmentation training data was produced by randomly

choosing 11 German newspaper articles (from news stories published in 2008 and avail-

able freely on the Internet), identifying all words greater than 6 characters in length,

and then manually segmenting each word so that the resulting units could be translated

‘directly’ into English.13 This is a rather unspecific task definition, but since reference

lattices may contain any number of segmentations, it was not particularly challenging

since it was never necessary to select the ‘correct’ segmentation. For a test set, 7 fur-

ther newspaper articles and one article from the German language version of Wikipedia

were selected. This resulted in 621 training sentences corresponding to 850 paths for the

dev set, and 279 words (302 paths) for the test set. Each word segments into on average

1.4 different segmentations (range, 1 to 8). The development and test data are publicly

available for download.14

Translation training data. For translation experiments, a hierarchical phrase-based

translation system (§3.1.2.2) capable of translating word lattice input (§3.2) was utilized.

For the language model, a 5-gram English language model trained on the AFP and Xin-

13This segmentation was carried out by the author.
14http://github.com/redpony/cdec/tree/master/compound-split/de/

169

Table 4.3: Training corpus statistics.

f -tokens f -types Eng. tokens Eng. types
German (surface) 38M 307k 40M 96k
German (1-best) 40M 136k ” ”
Hungarian (surface) 25M 646k 29M 158k
Hungarian (1-best) 27M 334k ” ”
Turkish (surface) 1.0M 56k 1.3M 23k
Turkish (1-best) 1.1M 41k ” ”

hua portions of the Gigaword v3 corpus (Graff et al., 2007) with modified Kneser-Ney

smoothing (Kneser and Ney, 1995) was used. The training, development, and test data

for German-English and Hungarian-English systems used were distributed as part of the

2009 EACL Workshop on Machine Translation,15 and the Turkish-English data corre-

sponds to the training and test sets used in the work of (Oflazer and Durgar El-Kahlout,

2007).

Since the grammar induction procedure for hierarchical phrase-based translation

models requires aligned sentence pairs (not lattices), I used two variants of the corpus

to learn the grammar: the original, unsegmented corpus and a variant created by extract-

ing the maximum weight segmentation under the model. This is designated the 1-BEST

variant. Corpus statistics for all language pairs are summarized in Table 4.3. In all lan-

guage pairs, the 1-BEST segmentation variant of the training data results in a significant

reduction in types.

Word alignment was carried out by running Giza++ implementation of IBM Model 4

initialized with 5 iterations of Model 1, 5 of the HMM aligner, and 3 iterations of Model 4

(Och and Ney, 2003) in both directions and then symmetrizing using a heuristic technique

15http://www.statmt.org/wmt09

170

(Koehn et al., 2003). For each language pair, the corpus was aligned twice, once in its

non-segmented variant and once using the single-best segmentation variant.

The MERT algorithm (§3.1.4) was used to tune the feature weights of the transla-

tion model on a held-out development set so as to maximize an equally weighted linear

combination of BLEU and 1-TER (Papineni et al., 2002; Snover et al., 2006). The weights

were independently optimized for each language pair and each experimental condition.

4.4.3 Max-marginal pruning

Since the run-time of the lattice SCFG-based decoder is cubic in the number of nodes in

the input lattice, I used max-marginal pruning (also called forward-backward pruning) to

remove low-probability edges (as predicted by the segmentation model) from the input

lattices before translation. Max-marginal pruning is a technique to remove edges from

a WFST or WSCFG whose marginal weight under the tropical semiring (hence ‘max’

because of the semiring’s addition operator), is some factor away from its best path or

derivation. Recall that edge marginals are computed using the INSIDEOUTSIDE algorithm

(§2.4). The pruning factor, α, may be constant or it may be selected for each lattice so as

to ensure a particular edge density. For the experiments reported here, a constant α was

used, whose value was determined on the development set.

This pruning technique was originally introduced as a means of reducing the size

of recognition lattices in automatic speech recognition (Sixtus and Ortmanns, 1999), but

has found applications in parsing and machine translation (Huang, 2008). Max-marginal

pruning is particularly useful because although the decision to prune each edge is only

171

0

3

4

2

5

7

to
tonb

nb

nband

tonba

ton

band

ba

nd

and

tonband

nba

Figure 4.7: A full segmentation lattice (WFST) as of the word tonband with a minimum
segment length of 2.

0

3

4

2

5

7

-8

-5

-5

-35

-35

-80

-18-18

-90

-100

-90 -90

0

3

7
-8

-5 -5

Figure 4.8: (Above) possible max marginals for the lattice in Figure 4.7; paths more than
10 away from the best path are dashed; (below) lattice after max-marginal pruning.

made looking at that edge’s marginal weight, after pruning, a path from start state to

final state is guaranteed to remain. Figure 4.7 illustrates all possible segmentations of the

word tonband, with a minimum segment length of 2, and Figure 4.8 shows a possible

max-marginal weighting of the edges and example result of pruning.

172

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

R
e

c
a

ll

Precision

German-specific
General

Figure 4.9: The effect of the lattice density parameter on precision and recall.

4.4.4 Intrinsic segmentation evaluation

To give some sense of the model’s ability to generate lattices, I present precision and

recall of segmentations for max-marginal pruning parameters ranging from α = 0 to α =

5 as measured on a held-out test set. Precision measures the number of paths in the

hypothesized lattice that correspond to paths in the reference lattice; recall measures the

number of paths in the reference lattices that are found in the hypothesis lattice. Figure 4.9

shows the effect of manipulating the density parameter on the precision and recall of the

German lattices. Note that very high recall is possible; however, the German-only features

have a significant impact, especially on recall, because the reference lattices include paths

where Fugenelemente have been deleted. These can only be reached when the German-

specific deletions are supported by the model.

173

4.4.5 Translation experiments

In this section, I report the results of experiments to verify that the segmentation lattices

constructed using the CRF model trained with reference segmentation lattices yield better

translations than either an unsegmented baseline or a baseline consisting of a single-best

(maximum weight) segmentation.

For each language pair, let three conditions be defined: BASELINE, 1-BEST, and

LATTICE. In the BASELINE condition, a lowercased and tokenized (but not segmented)

version of the test data is translated using the grammar derived from a non-segmented

training data. In the 1-BEST condition, the single best segmentation y that maximizes

Λ · ~H(x,y) is chosen for each word x using the MERT-trained model (the German model

for German, and the language-neutral model for Hungarian and Turkish). This variant is

translated using a grammar induced from a parallel corpus that has also been segmented

in the same way. In the LATTICE condition, segmentation lattices were constructed using

the semi-CRF model and then pruned. For all languages pairs, α = 2.3 was used as the

pruning density parameter (which corresponds to the highest F-score on the held out test

set). Additionally, if the unsegmented form of the word was removed from the lattice

during pruning, it was restored to the lattice with a weight of 1.

Table 4.4 summarizes the results of the translation experiments comparing the three

input variants. For all language pairs, substantial improvements are seen in both BLEU

and TER when segmentation lattices are used. Additionally, these experiments also con-

firm previous findings that showed that when a large amount of training data is avail-

able, moving to a one-best segmentation does not yield substantial improvements (Yang

174

Table 4.4: Translation results for German-English, Hungarian-English, and Turkish-
English. Scores were computed using a single reference and are case insensitive.

Source condition BLEU TER

German (baseline) 21.0 60.6
German (1-best) 20.7 60.1
German (lattice) 21.6 59.8
Hungarian (baseline) 11.0 71.1
Hungarian (1-best) 10.7 70.4
Hungarian (lattice) 12.3 69.1
Turkish (baseline) 26.9 61.0
Turkish (1-best) 27.8 61.2
Turkish (lattice) 28.7 59.6

and Kirchhoff, 2006). Perhaps most surprisingly, the improvements observed when us-

ing lattices with the Hungarian and Turkish systems were larger than the corresponding

improvement in the German system, but German was the only language for which seg-

mentation training data was available. The smaller effect in German is probably due to

there being more in-domain training data in the German system than in the (otherwise

comparably sized) Hungarian system.

Targeted analysis of the translation output shows that while both the 1-best and

lattice systems generally produce adequate translations of compound words that are out of

vocabulary in the BASELINE system, the LATTICE system performs better since it recovers

from infelicitous splits that the one-best segmenter makes. For example, one class of

errors that are frequently observed is that the one-best segmenter splits an OOV proper

name into two pieces when a portion of the name corresponds to a known word in the

source language (e.g. tom tancredo→ tom tan credo which is then translated as tom tan

belief).16

16We note that one possible solution for this problem would be to incorporate a feature indicating whether

175

 84

 84.2

 84.4

 84.6

 84.8

 85

 1 1.5 2 2.5 3 3.5

 2

 4

 6

 8

 10

 12

 14

 16

1-
(T

E
R

-B
LE

U
)/

2

se
cs

/s
en

te
nc

e

Segmentation lattice density

Translation quality
Decoding time

Figure 4.10: The effect of the lattice density parameter on translation quality and decoding
time.

The effect of pruning on translation. Figure 4.10 shows the effect of manipulating the

α parameter used in max-marginal pruning on the performance and decoding time of the

Turkish-English translation system.17 It further confirms the hypothesis that increased

diversity of segmentations encoded in a segmentation lattice can improve translation per-

formance; however, it also shows that once the density becomes too great, and too many

implausible segmentations are included in the lattice, translation quality will be harmed.

Thus, pruning is not only helpful for improving decoding efficiency, but important for

quality.

a named entity is being segmented into the semi-CRF model.
17Turkish-English was used for this experiment because the BASELINE and LATTICE systems have the

largest difference in scores of any of the language pairs.

176

4.5 Related work

The related problem of learning from a data set where there is a prior distribution over

possible labels has been explored quite extensively (Dawid and Skene, 1979; Jin and

Ghahramani, 2002; Smyth et al., 1994; Wiebe et al., 1999). With the rise of the so-called

‘human computation paradigm’ (von Ahn, 2006) there has been renewed interest in the

problems associated with learning from uncertain labels and determining how accurate

training data must be to facilitate learning (Dredze et al., 2009; Snow et al., 2008).

Sutton et al. (2007) describes how linear chain CRFs can be composed and trained

jointly, leading to improved performance on a number of tasks where information from

one classifier is used as a feature in a downstream classifier. This can be approximately

understood as supervised training where there is a distribution over the inputs side of

the pairs in the training data (whereas in this chapter the case where there is a distribution

over the outputs was considered). Their approach relies on WFST composition to perform

inference over the product of multiple CRFs.

Learning to segment words from unbroken text is a well-studied problem, in the

context of both supervised and unsupervised learning. Tseng et al. (2005) describe a CRF

segmenter for Chinese text, which Andrew (2006) shows can be improved with a hybrid

linear CRF / semi-CRF model that is capable of using features that depend on the full

word, not just characters and local boundary labels. While segmenters are often intended

to match the segmentations described in style guides (for details, see Sproat and Emerson

(2003)), some more recent work has attempted to learn segmentation for use in specific

tasks. Chang et al. (2008) adapt the parameters of a CRF Chinese segmenter so as to

177

maximize performance in Chinese-English machine translation, and Chung and Gildea

(2009) describe an (unsupervised) Bayesian semi-HMM that learns word segmentations

(for a variety of East Asian languages) tailored to the machine translation task from oth-

erwise unannotated parallel corpora.

Koehn and Knight (2003) describes a heuristic approach to segmenting compound

words in German that is based on the frequency with which hypothesized segments are

found as free-standing tokens in large corpora. Based on this observation, they propose a

model of word segmentation that splits compound words into pieces found in the dictio-

nary using heuristic scoring criteria. A weakness of this approach is that the hypothesized

segments their model produces must be found in their segmenter’s dictionary.

4.6 Future work

The model described here can easily be generalized to incorporate a prior over label dis-

tributions, as proposed by Dredze et al. (2009) for the purpose of learning from noisy

data. Therefore the technique described in this chapter is useful in the context of learning

when training data is both noisy and there are multiple correct labels. This opens up a

number of useful possibilities. Some tasks, like Chinese word segmentation (Sproat and

Emerson, 2003), which are inherently ambiguous, are typically annotated with the help

of a style guide that attempts to formulate rules that annotators can use to resolve am-

biguities while labeling. Rather than attempting to create an exact style guides, one can

simply ask a large number of unskilled annotators to segment the words based on their

intuitions, which would produce a distribution over segmentations that could be used to

178

train a model. Furthermore, training will be efficient since, unlike Dredze et al. (2009),

the ‘reference distribution’ is encoded a compact WFST.

Alternative training objectives. Conditional random fields can be understood as max-

imum entropy models where a probabilistic structured prediction model is chosen such

that its (Shannon) entropy is maximized but the expected values of feature functions

match the empirical values of those functions in a set of training data (Gong and Xu,

2007).18 That is, given a set vector of feature functions ~H(x,y), and a set of training

data D = {x j,y j}`j=1, the principle of maximum entropy says to select a model p∗ from

among all possible models P that predict an element from Y given an element from X ,

according to the following constrained optimization problem:

p∗ = argmax
p∈P

|D|

∑
j=1

H(p(y′|x j))

s.t.
|D|

∑
j=1

Ep(y′|x j)Hk(x j,y′) =
|D|

∑
j=1

Hk(x j,y j) ∀k ∈ [1,m]

With the introduction of the ambiguity in references, the empirical feature value becomes

an expectation under a distribution q(y′|x,Y j):

18The Shannon entropy of a distribution p is H(p) is the negative expectation of the negative log proba-
bility under the distribution with 0 · log0 = 0 (Cover and Thomas, 2006).

179

p∗ = argmax
p∈P

|D|

∑
j=1

H(p(y′|x j))

s.t.
|D|

∑
j=1

Ep(y′|x j)Hk(x j,y′) =
|D|

∑
j=1

Eq(y′|x,Y j)Hk(x j,y′) ∀k ∈ [1,m]

Specifically, I use EM, defining q(y′|x,Y j) to be the posterior weighting of a reference

under the model (§5.2). Thus, whereas in the traditional maximum likelihood formulation,

the constraints are fixed, in the latent variable case, they depend on the model parameters!

Solving this problem amounts to the identification of a stable point where the entropy is

maximized and the constraints are met.

Is this a good training criterion? While the empirical results clearly indicate it is

useful, several things militate against it. First, the training objective does not care about

the shape of q—there are absolutely no constraints on it (other than those that apply to

all probability distributions). In the case of learning segmentation models from reference

lattices, a solution could possibly be found that assigns all probability mass to a single

segmentation in the reference lattice. This seems undesirable: reference segmentation lat-

tices are defined to contain all good segmentations: the model should not get to decide to

effectively disregard some of them. A better objective would ensure that some probability

mass is distributed over all paths in the reference. Second, the objective is non-convex,

meaning that in general, any solution may be a local optimum, and arbitrarily far from

the global minimum that is sought. Although this does not appear to have been a problem

in the segmentation model explored here, this could be a different story when modeling

180

other linguistic phenomena.

Fortunately, both objections can be addressed by changing the form of q. One pos-

sible alternative definition of q that may be more appropriate is just a uniform distribution

over all strings in Y j, that is:

q(y′|x,Y j) =
1

|L(Y j)|

Not only does this objective ensure that some probability mass is assigned to every path

in the reference lattice at training time, using a uniform q has other advantages. Most

important, the optimization problem becomes globally convex again, meaning that local

optima will not be a problem during optimization. Second, the ‘empirical’ term in the

gradient becomes independent of Λ, meaning it can be computed just once, potentially

reducing the computational effort required to train the model. Alternatively, changing the

posterior can be understood as a form of posterior regularization, which is proposed by

Ganchev et al. (2009) as general technique for biasing how models with latent variables

are learned by imposing constraints on the posterior distributions over latent variables

during learning.

Future work will explore the differences in training objectives on the word segmen-

tation task. Additionally, tasks that have a latent variable over derivations (such as parsing

(Clark and Curran, 2004), or translation (Blunsom et al., 2008a)) may also benefit from

alternative definitions of q.

181

4.7 Summary

I have described a learning objective that permits multiple references encoded compactly

in a FST to be used in the training of a semi-Markov conditional random field and demon-

strated that this technique can be used effectively to generate segmentation lattices for

input to a translation system. By using dense, linguistically motivated features, I was able

to learn a model from a very small amount of training data that not only performs well,

but generalizes to typologically similar languages. Furthermore, while the task of gener-

ating the reference lattices was rather minimally specified, it was not difficult to execute

since rather than having to use some arbitrary criterion to resolve annotation ambiguities,

all possibly labels were utilized, since they were ‘correct’ from the model’s perspective.

182

5 Context-free representations of ambiguity

The girl the man the boy saw kissed left.

–John Kimball (1973)

In the previous two chapters, I showed that replacing single input values with weighted

sets of alternatives improves translation, and that replacing single output labels with sets

of correct output labels can be used effectively in learning. To avoid having to enumer-

ate all the elements in the sets when performing inference, a (non-recursive) WFST was

utilized to represent the content of the sets compactly, taking advantage of common sub-

structure found across elements. In this chapter, the problem of translation from a set

of possible inputs is revisited, focusing on the case where the input possibilities can be

represented efficiently using a context-free structure (§2.2.2).1

As was mentioned in the overview of machine translation given in Chapter 3,

translation models based on synchronous context free grammars (SCFGs) have become

widespread in recent years (Chiang, 2007; Wu, 1997; Zollmann and Venugopal, 2006).

One reason for their popularity is that SCFG models have the ability to search large num-

bers of reordering patterns in space and time that is polynomial in the length of the dis-

placement, whereas an FST must generally explore a number of states that is exponen-

1This chapter contains material published originally in Dyer and Resnik (2010).

183

tial in this length.2 As one would expect, for language pairs with substantial structural

differences (and thus requiring long-range reordering during translation), SCFG models

have come to outperform the best FST models (Zollmann et al., 2008). Targeted analysis

indicates that these context-free models improve translation quality specifically by deal-

ing more effectively with mid- and long-range reordering phenomena than phrase-based

(WFST) models do (Birch et al., 2009).

In this chapter, I introduce a new way to take advantage of the computational bene-

fits of CFGs during translation. Rather than using a single SCFG as the translation model,

which both reorders and translates a source sentence into the target language, the transla-

tion process is factored into a two step pipeline where (1) the source language is reordered

into a target-like order, with alternatives encoded in a context-free forest, and (2) the re-

ordered source is transduced into the target language using an FST that represents phrasal

correspondences.

While multi-step decompositions of the translation problem that take advantage of

the closure properties of compositions of WFSTs have been proposed before (Kumar

et al., 2006), such models are less practical with the rise of SCFG models, since the con-

text free languages are not closed under composition (§2.2.3). However, the CFLs are

closed under composition with regular languages. By using only a finite state phrase

transducer and representing reorderings of the source in a context free forest, inference

over the composition of the two models is not only decidable, but tractable. In particu-

lar, the context free reordering forest can be composed with a WFST phrase transducer

2The focus here is the reordering made possible by varying the arrangement of the translation units, not
the local word order differences captured inside memorized translation pairs.

184

using the top-down composition algorithm (§2.3.2.1). The result of this composition is

a WSCFG of translations, the same as encountered in translation with WSCFG-based

translation models, and it can be intersected with an n-gram target language model using

standard techniques (Huang and Chiang, 2007).

This chapter proceeds as follows. In the next section (§5.1), reordering forests are

introduced. Since in translation it is necessary to discriminate between good reorderings

of the source and bad ones, I how show to reweight the edge weights in the reordering

forest by treating them as latent variables in an end-to-end translation model (§5.2). Then

experimental results on language pairs requiring both small and large amounts of reorder-

ing are presented (§5.3). The chapter concludes with a discussion of related work (§5.4)

and future work (§5.5).

5.1 Reordering forests

In this section, I describe source reordering forests, a WCFG representation of source

language word order alternatives. The basic idea is that for the source sentence, f, that is

to be translated, a (monolingual) context-free grammar F will be created that generates

strings (f′) of words in the source language that are permutations of the original sentence.

Specifically, this forest should contain derivations that put the source words into an order

that approximates how they will be ordered in the grammar of the target language.

For a concrete example, consider the task of English-Japanese translation.3 The

input sentence is John ate an apple. Japanese is a head-final language, where the heads

3English is used here as the source language since the parse structure of English sentences is expected
to be more familiar.

185

ジョンが リンゴを 食べた
John-ga ringo-o tabeta

John an apple ate

ジョンが リンゴを 食べた
John-ga ringo-o tabeta

John ate an apple

John ate an appleJohn ate an applef

f'

e

Figure 5.1: Two possible derivations of a Japanese translation of an English source sen-
tence.

of phrases (such as the verb in a verb phrase) typically come last, and English is a head-

initial language, where heads come first. As a result, the usual order for a declarative

sentence in English is SVO (subject-verb-object), but in Japanese, it is SOV, and the

desired translation into Japanese is John-ga ringo-o [an apple] tabeta [ate]. In summary,

when translating from English into Japanese, it is usually necessary to move verbs from

their position between the subject and object to the end of the sentence.

This reordering can happen in two ways, which is depicted in Figure 5.1. In the

derivation on the left, a memorized phrase pair captures the movement of the verb (Koehn

et al., 2003). In the other derivation, the source is first reordered into target word order

and then translated, using smaller translation units. In addition, it is assumed that the

phrase translations were learned from a parallel corpus that is in the original ordering, so

the reordering forest F should include derivations of phrase-size units in the source order

as well as the target order.

A minimal reordering forest that supports the derivations depicted needs to include

both an SOV and SVO version of the source. This could be accomplished trivially with

the following grammar:

186

0 1

an : ε

apple : リンゴを

John : ジョンが

ate : 食べた

[John-ga]

[ringo-o]

[tabeta]

23

ate : εan : ε

apple : リンゴを 食べた
[ringo-o tabeta]

Figure 5.2: A fragment of a phrase-based English-Japanese translation model, represented
as an FST. Japanese romanization is given in brackets.

S → John ate an apple

S → John an apple ate

However, this grammar misses the opportunity to take advantage of the regularities in the

permuted structure. A better alternative might be:

S → John VP

VP → ate NP

VP → NP ate

NP → an apple

In this grammar, the phrases John and an apple are fixed and only the VP contains order-

ing ambiguity.

187

5.1.1 Reordering forests based on source parses

Many kinds of reordering forests are possible. In general, the best one for a particular

language pair must fulfill two criteria. It must be easy to create given the resources avail-

able in the source language, and it will also be one that compactly expresses the source

reorderings that are most likely to be useful for translation. In this chapter, the focus is

on one possible kind of reordering forest that is inspired by the reordering model of Ya-

mada and Knight (2001).4 These are generated by taking a source language parse tree

and ‘expanding’ each node so that it rewrites with different permutations of its children.

For computational tractability, all permutations are included in the grammar only when

the number of children of a node in the input parse is less than 5, otherwise permutations

where any child moves more than 4 positions away from where it starts are excluded.

For an illustration using the example sentence, refer to Figure 5.3 for the forest

representation and Figure 5.4 for its isomorphic CFG representation. It is easy to see that

this forest generates the two ‘good’ order variants from Figure 5.1; however, the forest

includes many other derivations that will not lead to good translations.

Figure 5.5 shows an example of a source reordering forest that is then composed

with a finite state transducer transduction model, using the top-down algorithm (§2.3.2.1)

to perform the composition. The output of the translation process thus has the same

structure—a WSCFG—as the output of a standard WSCFG-based translation model (com-

pare with Figure 3.3, which shows the translation forest output of a hierarchical phrase-

4One important difference is that this translation model is not restricted by the structure of the source
parse tree; i.e., phrases used in transduction need not correspond to constituents in the source reordering for-
est. However, if a phrase does cross a constituent boundary between constituents A and B, then translations
that use that phrase will have A and B adjacent.

188

Original parse:

Reordering forest:

S

V DT NN

VP

NPsubj

NPobj

John ate an apple

1 1

1

1

1

1

22

2

22

2

S

V DT NN

VP

NPsubj

NPobj

John ate an apple

1 1

1

2

2

2

Figure 5.3: Example of a reordering forest. Linearization order of non-terminals is indi-
cated by the index at the tail of each edge. The isomorphic CFG is shown in Figure 5.4;
dashed edges correspond to reordering-specific rules.

based translation model). This forest has three derivations: two yielding the correct head-

final Japanese word order, and one where the VP is in (incorrect) head-initial order. In

the next section, a technique for learning the weights of the edges (i.e., rewrite rules) in

the reordering forest is described. This technique seeks to rank correct translations into

the target language more highly than incorrect ones. In the given example, to get the

proper output word order where tabeta comes after ringo-o, there are two possibilities.

Either the head-final rule S→ NP V should have a higher weight than the head-initial

189

Original parse grammar:

S → NPsubj VP
VP → V NPobj

NPobj → DT NN
NPsubj → John

V → ate
DT → an
NN → apple

Additional reordering grammar rules:

S → VP NPsubj

VP → NPobj V
NPobj → NN DT

Figure 5.4: Context free grammar representation of the forest in Figure 5.3. The reorder-
ing grammar contains the parse grammar, plus the reordering-specific rules.

rule S→ V NP, or, (alternatively) the phrase translation of ate an apple should be more

highly weighted than the component translations, which enables the head-initial English

word order to be translated by a memorized phrase pair.

5.1.2 What about finite-state equivalents?

Before looking at how to learn a reordering model, I consider one possible objection to the

translation process proposed here. Because reordering forests as defined are non-recursive

CFGs, there must be an FSA which defines exactly the same set of strings as generated

by the CFG (Hopcroft and Ullman, 1979). Since previous chapters have demonstrated

that WFSTs may be used as input to the translation process, one might naturally wonder

why bother to come up with a method to translate non-recursive WCFGs when the ap-

proaches described in previous chapters are apparently available. I argue that a finite-state

190

f – input sentence: ate an apple

F – identity WSCFG reordering forest (weights not shown; start symbol is S):

S → V NP
S → NP V

V → ate
NP → an apple

G – WFST translation model:

0 1

an : ε

apple : リンゴを

John : ジョンが

ate : 食べた

[John-ga]

[ringo-o]

[tabeta]

23

ate : εan : ε

apple : リンゴを 食べた
[ringo-o tabeta]

F ◦G = (G−1 ◦F −1)−1 – translation forest (start symbol is 0S0):

0S0 → 0V0 0NP0

0S0 → 0V2 2NP0

0V0 → tabeta

0V2 → ε

2NP0 → ringo-o tabeta

0NP0 → ringo-o

Figure 5.5: Example reordering forest translation forest.

191

representation of a reordering forest is impractical for two reasons: model parameteriza-

tion and the size required to model long-range reordering patterns in a WFST. First, a

WCFG can quite easily be parameterized using features that are quite natural for mod-

eling word ordering divergences between two languages, as will be demonstrated below

(§5.3.1). While there would surely be many useful finite-state features as well, the second

objection is more serious. Constructing a WFST equivalent of a reordering WCFG may

require, in the worst case, an exponential number of states compared to the number of

non-terminals in the WCFG (Pereira and Wright, 1991). Moreover, this bound is likely to

be problematic for exactly the kinds of grammars that should be considered when model-

ing word order alternatives in translation. The following example grammar illustrates the

problem with finite-state representations of order alternatives.

S → AdvP X | X AdvP

AdvP → allegedly

X → John robbed the bank

This CFG representation of two order possibilities is quite natural: there is exactly one

representation of the phrase John robbed the bank in the grammar, and the adverbial

phrase is permitted to locate on either side. In the equivalent (minimal) finite-state rep-

resentation of this set of strings, it would be necessary to encode the phrase John robbed

the bank twice, once when it occurs to the right of an AdvP and once when the AdvP has

yet to occur. Since, in the general case X may be any length, and this kind of alternation

is exactly the sort of variation that reordering forests are likely to contain when modeling

192

word order divergences between languages, this poses a serious problem.

5.2 Modeling

A reordering forest derives many different target strings corresponding to different per-

mutations of the input sentence. Some of these permutations, when translated using the

lexical and phrasal transduction operations possible in the phrasal WFST, will lead to

translations that have the correct word order (and word choice) and others will be in-

correct (incorrect target word order or incorrect lexical choice). The model should dis-

tinguish these two classes such that reordering forest derivations leading to well-ordered

translations have a higher weight than those which are unlikely to lead to well-ordered

translations.

If a corpus of source language sentences paired with ‘reference reorderings’ were

available, such a model could be learned directly as a relatively straightforward super-

vised learning task. However, creating the optimal target-language reordering f′ for some

f is a nontrivial task, even if when taking advantage of the ability to have multiple correct

references using the techniques from Chapter 4.5 Instead of trying to model reordering

directly, I opt to treat the reordered form of the source, f′, as a latent variable in a trans-

lation model, and to train the reordering model and translation model jointly. Using this

approach, only a parallel corpus of translations is required to learn the reordering model.

Not only does the latent variable approach obviate the necessity of creating problematic

‘reference reorderings’, but it is also intuitively satisfying because from a task perspec-

5For a discussion of methods for generating reference reorderings from automatically word aligned
parallel corpora, refer to Tromble and Eisner (2009).

193

tive, the values of f′ are not of interest, the task is only to produce a good translation

e.

5.2.1 A probabilistic translation model with a latent reordering variable

The forest-reordering translation model is a two phase process. First, source sentence f

is reordered into a target-like word order f′ according to a reordering model r(f′|f). The

reordered source is then transduced into the target language according to a translation

model t(e|f′). The requirement that r(f′|f) can be represented by a non-recursive WCFG,

i.e. a forest as in §5.1.1, is imposed, and also that t(e|f′) can be represented by a (cyclic)

finite state transducer, as in Figure 5.2.

Since the reordering forest may define multiple derivations a from f to a particular

f′, and the transducer may define multiple derivations d from f′ to a particular translation

e, these variables are treated as latent and marginalized out to define the probability of a

translation given the source:

p(e|f) = ∑
d

∑
f′

t(e,d|f′)∑
a

r(f′,a|f) (5.1)

Crucially, since r(f′|f) is assumed to have the form of a non-recursive WSCFG and

t(e|f′) that of a cyclic WFST (which has no epsilons in its output), the quantity (5.1),

which sums over all reorderings (and derivations), can be computed using the top-down,

left-to-right composition algorithm (§2.3.2.1) and then the INSIDE algorithm (§2.4.1).

The WSCFG that results from the composition is likewise guaranteed to be non-recursive,

meaning that the INSIDE algorithm can be utilized.

194

5.2.2 Conditional training

While it is straightforward to use expectation maximization to optimize the (marginal)

joint likelihood of the parallel training data with a latent variable model, a log-linear pa-

rameterization trained to maximize conditional likelihood offers more flexibility (Blun-

som et al., 2008a; Petrov and Klein, 2008). Thus, the CRF training criterion described

in the previous chapter (§4.1) is reused here. Note that even though a single, unambigu-

ous reference translation is assumed, it is nevertheless necessary to perform marginaliza-

tion during computation of the empirical feature expectations: training requires summing

over the different derivations (corresponding to different permutations of the source sen-

tence and different decompositions into phrases) that lead to the target translation. Using

log-linear parameterization enables a rich set of (possibly overlapping, non-independent)

features to be used to discriminate among translations. The probability of a derivation

from source to reordered source to target is thus written in terms of model parameters

Λ = 〈λ1,λ2, . . . ,λm〉 as:

p(e,d, f′,a|f;Λ) =
exp∑k λk ·Hk(e,d, f′,a, f)

Z(f;Λ)

where Hk(e,d, f′,a, f) = ∑
r∈d

hk(f′,r)+∑
s∈a

hk(f,s)

The derivation probability is globally normalized by the partition function Z(f;Λ), which

is just the sum of the numerator for all derivations of f (corresponding to any e). As in the

previous chapters, the Hk are real-valued feature functions that may be overlapping and

non-independent. For computational tractability, it is assumed that the feature functions

Hk decompose additively with the derivations of f′ and e in terms of local feature functions

195

hk. Details about the features used in the parameterization are discussed below (§5.3.1).

Also define Z(e, f;λ) to be the sum of the numerator over all derivations that yield the

sentence pair 〈e, f〉. A spherical Gaussian prior on the value of Λ with mean 0 and variance

σ2 = 1 is also used, which helps prevent overfitting of the model, as discussed in the

previous chapter (§4.1.1). The training objective is thus to select Λ minimizing:

L = − log ∏
〈e,f〉

p(e|f;Λ)−
||Λ||22
2σ2

= −∑
〈e,f〉

[logZ(e, f;Λ)− logZ(f;Λ)]−
||Λ||22
2σ2 (5.2)

The gradient of L with respect to the feature weights has a parallel form; it is the differ-

ence in feature expectations under the reference distribution and the translation distribu-

tion with a penalty term due to the prior:

∂L
∂λk

=

(
∑
〈e,f〉

Ep(d,a|e,f;Λ)[hk]−Ep(e,d,a|f;Λ)[hk]

)
− λk

σ2 (5.3)

Computing the objective and gradient. The objective and gradient that were just in-

troduced can be computed in two steps, by constructing appropriate WSCFGs and then

using standard inference algorithms (§2.4.1). For clarity, I describe precisely how to do

so here. Note that this is essentially the same two step construction described by the two-

parse algorithm (§2.3.4) and used to compute the objective and gradient when training

with reference lattices (§4.2; Figure 4.3).

1. Given a training pair 〈e, f〉, generate the WSCFG of reorderings F from f as de-

scribed in §5.1.1.

196

2. Compose this grammar with T , the WFST representing the phrasal translation

model, using the top-down composition algorithm (§2.3.2.1) which yields F ◦T ,6 a

translation forest that contains all possible translations of f into the target language,

using any possible permutation of f in the reordering forest.

3. Run the INSIDE algorithm on F ◦T to compute Z(f;Λ), the first term in the objec-

tive, and run the INSIDEOUTSIDE algorithm to compute Ep(e,d,a|f)[hi].

4. Compute Z(e, f;Λ) and the first expectation in the gradient by finding the subset

of the translation forest F ◦T that exactly derives the reference translation e. To

do this, rely on the fact that F ◦T is a WSCFG. Since, by construction, it is non-

recursive, and the reference string e is also recursive, composition can be performed

with the bottom-up composition algorithm (§2.3.2.2). The resulting forest, F ◦T ◦

e, contains all and only derivations that yield the pair 〈e, f〉. On this forest, the

INSIDE algorithm computes Z(e, f;Λ) and the INSIDEOUTSIDE algorithm can be

used to compute Ep(e,d,a|f)[hi].

5. Compute L using Equation (5.2) and its gradient using Equation (5.3).

With an objective and gradient, any first-order numerical optimization technique

can be applied. For the experiments reported below, L-BFGS was used (Liu and Nocedal,

1989). Although the conditional likelihood surface of this model is non-convex (on ac-

count of the latent variables), no obvious initialization effect was noted; therefore, initial
6To be precise, the inversion theorem (§2.1.3.5) is used, computing F ◦T as (T−1 ◦F −1)−1 since the

presentation of the algorithms assumes the context-free operand in a composition operation is the right-most
element.

197

values of Λ = 0 were used, with σ2 = 1. For all models, training converged to a local

minimum in fewer than 1,500 function evaluations.7

5.3 Experiments

I now turn to an experimental validation of the reordering and translation models intro-

duced in the preceding section. The behavior of the model is evaluated in three conditions:

a small data scenario consisting of a translation task based on the BTEC Chinese-English

corpus (Takezawa et al., 2002), a large data Chinese-English condition designed to be

more comparable to conditions in a NIST MT evaluation, and a large data Arabic-English

task.

The WFST phrase translation model was constructed from phrase tables extracted

as described in Koehn et al. (2003) with a maximum phrase size of 5 (see also §3.1.2.1).

The parallel training data was aligned using the Giza++ implementation of IBM Model 4

(Och and Ney, 2003). Chinese text was segmented using a CRF-based word segmenter,

optimized to produce output compatible with the Chinese Treebank segmentation stan-

dard (Tseng et al., 2005). The Arabic text was segmented using the technique described

in Lee et al. (2003). The Stanford parser was used to generate parses for all conditions,

and these were then used to generate the reordering forests as described in §5.1.1.

Table 5.1 summarizes statistics about the corpora used. The reachability statistic

indicates what percentage of sentence pairs in the training data could be regenerated us-

7Other optimization techniques may converge much more rapidly, such as stochastic gradient descent
(Bottou, 1998); however, L-BFGS was preferred since its internal representation of the curvature of the
objective surface will detect inconsistent calculations of the objective and gradient, which is quite useful
for verifying the correctness of the model implementation.

198

ing the reordering/translation model.8 Since L-BFGS required over 1,000 function and

gradient evaluations for convergence, and each requires a full pass through the training

data, the full set of reachable sentences was not used to train the reordering model, except

in the small BTEC corpus. Instead, a randomly selected 20% of the reachable set in the

Chinese-English condition, and all reachable sentence pairs under 40 words (source) in

length in the Arabic-English condition were used.9

Error analysis indicates that a substantial portion of unreachable sentence pairs are

due to alignment (word or sentence) or parse errors; however, in some cases the reordering

forests did not contain an adequate source reordering to produce the necessary target. For

example, in Arabic, which is a VSO language, the treebank annotation is to place the

subject NP as the ‘middle child’ between the V and the object constituent. This can be

reordered into an English SVO order using child-permutation; however, if the source VP

is modified by a modal particle, the parser makes the particle the parent of the VP, and

it is no longer possible to move the subject to the first position in the sentence. Richer

reordering rules are needed to address this. Other solutions to the reachability problem

include targeting reachable oracles instead of the reference translation (Li and Eisner,

2009) or making use of alternative training criteria, such as minimum risk training, which

do not require being able to exactly reach a target translation (Li and Khudanpur, 2009).

8When training to maximize conditional likelihood, only sentences that can be generated by the model
can be used in training.

9Despite using a reduced training data size, both the qualitative analysis of what is learned by the
reordering model and the quantitative analysis of the translation results suggest that the reordering model is
not undertrained.

199

Table 5.1: Corpus statistics

Condition Sentences Source words Target words Reachability
BTEC 44k 0.33M 0.36M 81%

Chinese-English 400k 9.4M 10.9M 25%
Arabic-English 120k 3.3M 3.6M 66%

5.3.1 Reordering and translation features

Since the conditional random field training criterion is used, it is straightforward to use

numerous sparse features to parameterize the model. For the WFST translation compo-

nent, the typical features used in translation are included: relative phrase translation fre-

quencies p(e| f) and p(f |e), ‘lexically smoothed’ translation probabilities plex(e| f) and

plex(f |e), and a phrase count feature. For the reordering model, a binary feature for each

kind of rule used, for example φVP→V NP(a) fires once for each time the rule VP→ V NP

was used in a derivation, a. For the Arabic-English condition, it was observed that the

parse trees tend to be quite flat, with many repeated non-terminal types in one rule, so the

non-terminal types were augmented with an index indicating where they were located in

the original parse tree. This resulted in a total of 6.7k features for IWSLT, 18k features

for the large Chinese-English condition, and 516k features for Arabic-English (there were

many more due to the splitting of the non-terminals).

A target language model was not used during the training of the source reordering

model, but it was used during the translation experiments (see below).

200

5.3.2 Qualitative assessment of reordering model

Before looking at the performance of the model on a translation task, it is illuminating

to look at what the model learns during training. Figure 5.6 lists the 10 most highly

weighted reordering features learned by the BTEC model (above) and shows an example

reordering using this model (below), with the most English-like reordering indicated with

a star.10 Keep in mind, it is expected that these features will reflect what the best English-

like order of the input should be. All are quite intuitive, but this is not terribly surprising

since Chinese and English have very similar large-scale structures (both are head initial,

both have adjectives and quantifiers that precede nouns). However, two entries in the

list (starred) correspond to an English word order that is ungrammatical in Chinese: PP

modifiers in Chinese typically precede the VPs they modify, and CPs (relative clauses)

also typically precede the nouns they modify. In English, the reverse is true, and the

model has learned to prefer this ordering. It was not necessary that this be the case: since

the training procedure makes use of phrases memorized from a non-reordered training set,

it could have relied on those for all its reordering. These weights suggest that large-scale

reordering patterns are being successfully learned.

5.3.3 Translation experiments

The section considers how to apply this model to a translation task. The maximum condi-

tional likelihood training described in §5.2.2 is suboptimal for state-of-the-art translation

systems, since (1) it optimizes likelihood rather than an MT metric and (2) it does not

10The italicized symbols in the English gloss are functional elements with no precise translation. Q is an
interrogative particle, and DE marks a variety of attributive roles and is used here as the head of a relative
clause.

201

Feature λ note
VP→ VE NP 0.995
VP→ VV VP 0.939 modal + VP
VP→ VV NP 0.895
VP→ VP PP∗ 0.803 PP modifier of VP

VP→ VV NP IP 0.763
PP→ P NP 0.753

IP→ NP VP PU 0.728 PU = punctuation
VP→ VC NP 0.598
NP→ DP NP 0.538

NP→ NP CP∗ 0.537 rel. clauses follow

我 能 赶上 去 西尔顿 饭店 的 巴士 吗 ?
 I CAN CATCH [NP[CP GO HILTON HOTEL DE] BUS] Q ?

I CAN CATCH [NP BUS [CP GO HILTON HOTEL DE]] Q ?
I CAN CATCH [NP BUS [CP DE GO HILTON HOTEL]] Q ?
I CAN CATCH [NP BUS [CP GO HOTEL HILTON DE]] Q ?

I CAN CATCH [NP BUS [CP DE GO HOTEL HILTON]] Q ?
I CATCH [NP BUS [CP GO HILTON HOTEL DE]] CAN Q ?

Input:

5-best reordering:

(Can I catch a bus that goes to the Hilton Hotel ?)

Figure 5.6: (Above) The 10 most highly-weighted features in a Chinese-English reorder-
ing model. (Below) Example reordering of a Chinese sentence (with English gloss, trans-
lation, and partial syntactic information).

include a language model. However, despite these shortcomings, the fact that exact infer-

ence was tractable made it a compelling starting point, enabling learning to start from the

completely uniform distribution that occurs when Λ = 0.11 To address these limitations,

the maximum conditional likelihood model will be taken as a starting point for further

training with a more task-appropriate objective.

11The approximate inference techniques suggested by Li et al. (2009b) or training using expected BLEU
training (Li and Eisner, 2009) are problematic to utilize when Λ = 0, since they rely implicitly on the
best-first heuristic search of cube pruning, which fails when all derivations have the same weight.

202

5.3.3.1 Training for Viterbi decoding with MERT

To be competitive with other state-of-the-art translation systems, it is useful to be able

to optimize the model using Och’s minimum error training algorithm (§3.1.4) to opti-

mize BLEU on a development set; however, the model as described above cannot be used

since it contains far too many features and weights. Therefore, the weights assigned to

the sparse reordering features obtained using the maximum conditional likelihood train-

ing described above (§5.2.2) into a single ‘dense’ reordering feature, which then has a

single weight assigned to it tuned against the other translation features (relative frequen-

cies of phrase translations, lexical translation probabilities, etc.). Once the reordering

weights have been collapsed into a single feature, the coefficient for this feature can be

learned using the MERT algorithm (implemented using the upper envelope semiring) to

optimize the remaining weights together with this new feature so to maximize BLEU of

the maximum-weight derivation a held-out development set.

During this second training phase, a language model was incorporated using cube

pruning (Huang and Chiang, 2007). To improve the ability of the model to match re-

ordered phrases, the 1-best reordering of the training data under the learned reordering

model was extracted and phrases that translate from the 1-best reordering into the target

were extracted using the standard phrase extraction heuristic and used to supplement the

translation WFST.

203

5.3.3.2 Translation results

Scores on a held-out test set are reported in Table 5.2 using case-insensitive BLEU with

4 reference translations (16 for BTEC) using the original definition of the brevity penalty

(Papineni et al., 2002). The results of the new forest reordering model along with three

standard baseline conditions are presented, one with no-reordering at all (mono), the per-

formance of a phrase-based (PB) translation model with distance-based distortion, the

performance of a hierarchical (Hiero) phrase-based translation model (Chiang, 2007),

and then the forest-reordering model (CFG+FST).

Table 5.2: Translation results (BLEU)

Corpus Mono PB Hiero CFG+FST
BTEC 47.4 51.8 52.4 54.1
Chinese-English 29.0 30.9 32.1 32.4
Arabic-English 41.2 45.8 46.6 44.9

In the two Chinese conditions (BTEC and NIST Chinese-English), the forest re-

ordering model attains or surpasses the baseline of the a hierarchical phrase-based trans-

lation mode. However, the model performs less well on Arabic-English translation. These

results are unsurprising for two reasons. First, the forest-reordering model considers re-

ordering patterns from local all the way to full sentence reordering. While in Chinese-

English translation mid- to long-range reordering is often necessary (Birch et al., 2009),

Arabic tends to require more local reordering during translation. Thus, these results con-

firm previous findings that show that models that support local reordering but only limited

(or entirely forbidden) long-range reordering outperform models capable of support long-

range reordering on Arabic-English translation (Zollmann et al., 2008).

204

Condition Example output
CFG+FST Mankind has a total of 23 pairs of chromosomes.
Hiero A total of 23 pairs of chromosomes of human beings.
Reference Human beings have a total of 23 pairs of chromosomes.
CFG+FST Australian foreign minister will not be able to achieve more aid to North

Korea’s act of bad behavior
Hiero Australian foreign minister to bad behavior will not be able to achieve

more aid to North Korea
Reference Australian foreign minister says North Korea will not get more aid for

disgusting acts
CFG+FST This plan will provide tax preferential treatment to the broad working

masses.
Heiro The preferential tax cut plan will provide broad working masses.
Reference The plan will offer preferential tax-cuts to the ordinary people.
CFG+FST The United States against a dozen allies support for Iraq
Heiro The US war against Iraq, there are more than ten allies support
Reference The US war with Iraq wins support from a dozen allied countries

Figure 5.7: Four example outputs from the Chinese-English CFG+FST and hierarchical
phrase-based translation (Hiero) systems.

Figure 5.7 compares example outputs from the forest-reordering system (CFG+FST)

and the hierarchical phrase-based translation system (Hiero). Examples were selected by

examining sentences with fewer than 20 words, and the first four that had order differ-

ences were chosen. In 3 of the 4 cases, the CFG+FST system achieves a reasonable

ordering. However, the fourth, where the order of entities are mangled is typical of the

errors seen in the CFG+FST: elements move ‘too easily’, and end up in the wrong spot

during translation. This problem of excessive reordering is doubly problematic in Ara-

bic, where long-range movement is, as a rule, less often required. Figure 5.8 provides

example translations. While the CFG+FST system does managed to deal properly with

the notoriously problematic VSO→SVO reordering in the third and fourth examples, in

the first two, elements have been permuted inappropriately.

205

Condition Example output
CFG+FST That is scheduled to appear before the court four tomorrow, Monday.
Hiero It is expected that the four appear before the court tomorrow, Monday.
Reference It is scheduled that the four will stand before the court tomorrow

(Monday).
CFG+FST “Iraqna” mobile phone confirm the release of the two officials about

security.
Hiero “Iraqna” mobile phone to confirm the release of two of the security

officials.
Reference “Iraqna” mobile phone company confirms the release of its two security

officers.
CFG+FST The French Embassy in Baghdad maintaining silence regarding the fate

of journalists.
Hiero Abide by the French Embassy in Baghdad silence regarding the fate of

journalists .
Reference The French Embassy in Baghdad is remaining silent about the fate of

the two journalists.
CFG+FST On the final peace agreement for south Sudan signed in Nairobi.
Hiero Signed in Nairobi on the final peace agreement for south Sudan.
Reference Final peace accord on southern Sudan signed in Nairobi.

Figure 5.8: Four example outputs from the Arabic-English CFG+FST and hierarchical
phrase-based translation (Hiero).

206

5.3.4 Model complexity

The difference in size of the FST+CFG translation models (which are just WFSTs) and

hierarchical phrase-based translation models (§3.1.2.2) is also an interesting comparison.

Table 5.3 compares the number of unique phrasal translations of the hierarchical phrase-

based translation models with the number of distinct phrasal translations encoded in the

WFST translation table used in the translation experiments reported in the previous sec-

tion.

Table 5.3: Number of translations in the WFST model vs. rules in the hierarchical phrase-
based WSCFG model.

Corpus WFST rules WSCFG rules
BTEC 0.26M 3.1M
Chinese-English 7.4M 43M
Arabic-English 2.9M 33M

Table 5.3 makes clear that the WFSTs in the CFG+FST model are much smaller

than the corresponding hierarchical phrase-based translation grammars (and yet they at-

tain comparable or better translation performance). Furthermore, the WFSTs were con-

structed from two variants of the parallel training data—one in the original order and one

under the 1-best reordering of the reordering model, whereas the WSCFG model contains

rules extracted from a single variant of the corpus (the original word order). Although

these size statistics do not completely reflect the full complexity of the translation models

(the CFG+FST model depends on a source language parser with its own grammar which

was not considered at all here), the tendency is clear. Furthermore, the relative sizes

are expected. A hierarchical phrase-based translation model can be understood as the

207

composition of a reordering model and a phrasal translation model. Thus the translation

model must be much more complicated, since every reordering pattern for every differ-

ent translation pair must have its own rule. Furthermore, each combination will have its

own parameters, making data sparsity a potentially more serious issue when estimating

hierarchical phrase-based translation models than when estimating the WFSTs for the

CFG+FST translation model.

5.4 Related work

A variety of translation processes can be formalized as the composition of a finite state

representation of input (typically just a sentence, but often a more complex structure, like

a word lattice) with an SCFG (Chiang, 2007; Dyer et al., 2008; Wu, 1997; Zollmann

and Venugopal, 2006). Like these, this work uses parsing algorithms to perform the

composition operation, but to my knowledge, for the first time, the input has a context

free structure.12 Although not described in terms of operations over formal languages,

the model of Yamada and Knight (2001) can be understood as an instance of this class

of model with a specific input forest and phrases restricted to match syntactic constituent

boundaries.

Syntax-based preprocessing approaches that have relied on hand-written rules to re-

structure source trees for particular translation tasks have been quite widely used (Chang

et al., 2009; Collins et al., 2005; Wang et al., 2007; Xu et al., 2009). Discriminatively

trained reordering models have also been extensively explored. A widely used approach

12Satta (submitted) discusses the theoretical possibility of this sort of model but provides no experimental
results.

208

has been to use a classifier to predict the orientation of phrases during decoding (Chang

et al., 2009; Zens and Ney, 2006). However, these classifiers must be trained indepen-

dently from the translation model using training examples extracted from the word aligned

data. While sparse features are most often used, Setiawan et al. (2009) shows that a bi-

gram model over function word pairs can improve reordering.

A more ambitious approach to learning reordering models is described by Tromble

and Eisner (2009), who build a global reordering model that is learned automatically

from reordered training data. They also rely on parsing-like algorithms to explore an

exponential number of reorderings of an input sentence. However, at decoding time they

only consider a single-best reordering from their model. During training they iterate the

parsing-like search algorithm so as to locate permutations that are unreachable in a single

step. Somewhat surprisingly, their best results on a translation task are obtained if they

only run a single iteration of the model.

The discriminative training of the latent variable model is based on the techniques

proposed by Blunsom et al. (2008a,b). However, in their model translation and reordering

is learned jointly, whereas the model proposed in this chapter factors these two compo-

nents.

Huang and Mi (2010), which was developed concurrently to this work, describe a

top-down, left-to-right translation algorithm for tree-to-string translation that includes a

language model in the first decoding pass. This algorithm could be utilized to decode

with the translation model presented here, making a second-pass cube-pruning step un-

necessary.

209

5.5 Future work

The work described in this chapter can be extended in many ways. A few of the most

promising possibilities here are discussed here.

Reordering forests (§5.1) can be constructed in virtually any way, not just by per-

muting the children of nodes identified in the 1-best output of constituency parsers, as was

done in the experiments in this chapter. One natural extension, in the spirit of the models

from Chapter 3, is to consider a forest of outputs from a parser, which would enable the

reordering model to recover from parse errors made in the 1-best output from a statistical

parser.

The work of Tromble and Eisner (2009) also suggests another alternative: abandon

supervised parse structures entirely, and use a forest that recursively either directly orders

or inverts adjacent spans that are determined by other means. The ITG structure that was

used by Tromble and Eisner (2009), which starts with single word phrases that are merged

to form larger spans, is a straightforward starting point. However, larger units determined

by other means (mutual information, relative entropy, etc.) could also furnish a starting

segmentation. Alternatively the parse trees generated by unsupervised parsing techniques

could be used.

Another somewhat orthogonal line of work is to use dependency parses (Mel′čuk,

1988), rather than constituency parses, as the basis for the reordering forest. This could be

accomplished in a relatively straightforward manner simply by using CFG encoding of a

dependency parse tree (the simplest possible encoding consists of grammar rules H→CH

for left attaching children and H→ HC for right attaching children). The starting depen-

210

dency parses could be obtained using either supervised or unsupervised parsers. However,

since the quality of unsupervised dependency parsers has improved significantly in recent

years (Cohen and Smith, 2009; Cohen et al., 2010; Headden III et al., 2009; Klein and

Manning, 2004), a wholly unsupervised forest reordering model based on unsupervised

dependency parsing is a particularly promising avenue of research. Unlike many other ap-

plications of parse trees in NLP, the parse structures used in the forest reordering model

need only be useful for defining a space of plausible reorderings. Since the original word

order is maintained, even if they are linguistically unusual, a reasonable translation may

still be found.

One potential limitation of the model presented here is that it has no ability to re-

order phrases after translation. Except for the reordering captured by memorized phrase

pairs, any reordering considered by the model must be found in the input reordering for-

est. Since reordering is crucial for effective translation, providing multiple opportunities

to reorder during translation seems preferable. From this perspective, the approach taken

by Tromble and Eisner (2009) is preferable to the one taken here: they use a context-free

reordering model to select a 1-best reordering of the source words, and then they translate

this using a phrase-based translation model that is capable of performing further reorder-

ing (note that since they are selecting only a 1-best output, they could use any translation

model). Therefore, one logical extension of this work is to add a post-translation reorder-

ing step that permits reordering beyond what is represented in the input forest. This could

take advantage of finite-state phrase-based reordering models, such as those suggested by

Kumar et al. (2006).

More ambitious still would be an approach that would enable a WCFG reorder-

211

ing forest to be translated with a WSCFG translation model. Li et al. (2009b) describe

how variational techniques can be used to approximate the distribution over strings found

in WCFG forest with a WFST. As showed earlier (§5.1.2), the exact WFST equivalent

of a reordering forest that contains long-distance reordering patterns often becomes in-

tractably large. However, variational techniques provide a principled way of selecting

a WFST that is of manageable size but has a distribution over strings that is close to

the distribution defined by the reordering forest. While the equivalent WFSTs will only

be approximations of the reordering forest, this approach holds a number of intriguing

possibilities.13

5.6 Summary

In this chapter, I showed how to translate input structured as a WCFG using a WFST

translation model. As a demonstration of this technique’s practical value, I described a

technique for constructing ‘reordering forests’, based on the permutation of the children

of nodes of source language parse trees, in a manner reminiscent of the model of Yamada

and Knight (2001), but in which phrases were not restricted to line up with syntactic con-

stituents, and in which a log-linear parameterization was used, rather than a stochastic

one. The resulting ‘forest reordering translation model’ obtains quite competitive per-

formance in Chinese-English translation, a language pair where reordering problems are

a significant barrier to generating fluent target translations (Birch et al., 2009; Zollmann

et al., 2008).

13I thank Jason Eisner for this suggestion.

212

6 Conclusion

A computer beat me in chess, but it was no match when it came to kickboxing.

–Emo Philips

One of the central problems in natural language processing—if not the central problem—

is resolving ambiguity. This problem reappears in numerous specific instances: interpret-

ing the sequence of words underlying a speech signal, the parse tree or logical form of a

sentence, or a meaning-preserving translation of a text from one language into another.

This dissertation has argued that when modeling language processing, standard compu-

tational models are often too hasty at committing to an analysis, and that it is better to

preserve ambiguity for as long as possible, thereby incorporating as much knowledge

across as possible, and only making a decision in response to the input at the latest possi-

ble moment.

The contributions of this dissertation can be grouped into three broad areas: formal

foundations, machine learning, and applications. In the area of formal foundations, I de-

veloped a general model of ambiguity processing that subsumed two common approaches

to machine translation (phrase based (Koehn et al., 2003) and hierarchical phrase based

(Chiang, 2007)), extending them to support multiple inputs into the translation process.

These models made use of a new, general WFST-WSCFG composition algorithm.

213

In the area of machine learning, I presented a new formulation of the ‘hypergraph’

minimum error rate training (MERT) algorithm in terms of the well-known INSIDE algo-

rithm and a novel semiring (the upper envelope semiring). I also introduced a general-

ization of CRF training to deal with multiple references (for a single training example)

compactly encoded in a FST.

I also presented several applications of the general ambiguity-preserving process-

ing model and learning innovations. Across a variety of language pairs and domains,

deferring ambiguity resolution in machine translation systems improved the translation

quality. This was true not only when translating the output of noisy preprocessing com-

ponents (like speech recognizers), but even when translating text inputs. Furthermore,

these improvements held regardless of the form of the translation model (whether finite-

state or context-free). I also demonstrated that my generalization of CRF training could

be applied to the problem of learning a word segmentation model for translation. Finally,

I showed this way of thinking about information processing could be used to motivate a

new translation model that decomposed the problem into two independent components.

Not only did this model attain state-of-the-art performance or better, but the models were

far smaller than comparable hierarchical phrase based translation models.

6.1 Future work

Each chapter in this dissertation has discussed possible extensions to the individual topics

covered. I now consider several more speculative, high-level extensions of this work.

214

Ambiguity propagation in cognitive modules. Modular architectures are not only use-

ful in the design of natural language processing systems, but there is good evidence that

cognitive faculties are also factored into largely independent modules that interact through

narrow interfaces (Fodor, 1983; Steedman, 2000). In this dissertation, I have given ev-

idence that pipelines of (artificial) modules perform more robustly (Chapter 3) and can

consist of simpler components (Chapter 5) when they are able to propagate information

about a distribution over possible outputs, rather than being forced to commit to a sin-

gle output at each interface. Although it is quite different from the line of work I have

pursued so far, an interesting extension of this project into a completely new area would

seek to assess how adequate the ambiguity-preserving model is as a characterization in-

terfaces between cognitive modules. After all, the same ambiguity that artificial systems

encounter when processing language will be encountered by natural systems.

A potentially productive way of thinking about cognition in terms of ambiguity

propagation is to note that the output representations of upstream modules impose con-

straints on the computational systems that make use of them: the encoding of the am-

biguous alternatives must be computationally ‘compatible’ with the modules that make

use of them. To take an example from the dissertation, since reordering forests (§5.1)

are context free, they cannot be used as input to a context-free translation model. This

suggests that, in addition to looking for particular behavioral evidence that ambiguity is

propagated between cognitive modules, there may be evidence in the form of the compu-

tational complexity of the processing tasks themselves.

One domain where the ambiguity-preserving hypothesis may shed some light con-

cerns the interface between syntax and phonology. Phonological knowledge (for example,

215

in the form of rules that relate phonemic representations to phonetic forms) appears to be

expressible using nothing more computationally powerful than (W)FSTs (Beesley and

Karttunen, 2003). In contrast, syntax seems to depend on computations that are at least

context free. The presence of one context-free component in the system raises the ques-

tion: why should phonology not be context free as well? It is, after all, a more powerful

representation. One might think about this question as follows: if the output interface of

some module produces a single, best-guess analysis, it is not obvious why there should

be any restrictions on the computations used internally to individual modules. For ex-

ample, the output of the module that applies a phone→phoneme mapping would be the

best guess phonemic form of the input—whether or not the module relied on a finite-

state, context-free, or other computational device internally. However, if ambiguity is

propagated between components in such a way as to share structure between alternative

possibilities, then finding a context-free structured output as input to a context-free system

would be a priori unlikely, on account of the complexity and decidability results discussed

in Chapter 2. Thus, the ambiguity-preserving hypothesis may provide a framework for

interpreting empirical facts about language in new ways.

Unsupervised learning from ambiguous data. In Chapter 4, I considered how super-

vised learning can be adapted when the training data contains ambiguous labels. How-

ever, there are many problems that are more naturally solved using unsupervised learning

techniques, such as expectation maximization (Dempster et al., 1977) or nonparametric

Bayesian inference (Jordan, 2005). For example, inducing WSCFG or WFST translation

models from a parallel corpus can be treated as a problem where for an observed sentence

216

pair, the alignment and segmentation of the input words into phrases are latent variables

(Blunsom et al., 2009; DeNero et al., 2008). The obvious question asked by this work is:

what if there is ambiguity in the sentence pairs? Since many unsupervised techniques are

probabilistic in nature, the technique that I used in Chapter 4, dealing with ambiguity in

supervised learning by marginalizing over the ambiguous alternatives, can be used as a

starting point. Finally, since it has been argued that nonparametric Bayesian models are

useful statistical models of cognition (Griffiths et al., 2008), and since real-world learning

necessarily must deal with ambiguous inputs, the applications of unsupervised learning

techniques when the observation variables are noisy could be diverse indeed. As one

example application from the cognitive domain, the nonparametric Bayesian word learn-

ing model of Goldwater (2006) assumes an input consisting of unambiguous strings of

phonemes. While this assumption was a reasonable starting point, one may wonder what

affect there would be on the model if, rather than unambiguous inputs, the learner was

presented with distributions over phoneme strings. One strand of future work will be to

develop unsupervised learning models where ambiguity in the observations is explicitly

modeled.

Meaning as a latent variable in translation. Before the advent of the statistical ma-

chine translation paradigm, machine translation was often carried out by constructing an

interlingual representation from the input which was then used to generate output with

the same meaning (Dorr, 1993). The interlingual model is quite appealing since it is

structured around the preservation of meaning across languages, which is the goal of

translation. However, translation systems based on interlingual approaches to translation

217

have traditionally been much more difficult to develop than systems based on statistical

approaches, requiring significant effort by expert annotators. On the other hand, statistical

systems, while inexpensive to develop and capable of achieving quite impressive perfor-

mance, nevertheless fail to incorporate any direct representation of meaning, which seems

to be a liability in a task centered on the preservation of meaning. I argue that the ability to

efficiently translate a set of sentences is one way to bring a concept of meaning into statis-

tical translation—thereby leveraging the strengths of the interlingual approach—without

incurring the costs traditionally associated with it. Specifically, future work will replace

an single, unambiguous input sentence with a distribution over sentences representing al-

ternative ways of expressing the same underlying meaning. Then, using the lattice trans-

lation techniques from Chapter 3, entire sets of sentences will be translated, marginalizing

out their source realization. Generating alternative realizations of the underlying mean-

ing of a sentence can then leverage work on automatic paraphrasing (Madnani and Dorr,

2010). Initial forays into this idea have been made by Resnik et al. (2010) as well as

Onishi et al. (to appear 2010).

Other grammatical formalisms. The general model of ambiguity processing intro-

duced in Chapter 2 was used exclusively with WFST- and WSCFG-based models. An-

other extension of this work will consider other grammatical formalisms, such as TAG,

which has already begun to be used for modeling translational equivalence (Abeillé et al.,

1990; Carreras and Collins, 2009; DeNeefe and Knight, 2009), CCG, and tree-transducer

based formalisms (Graehl et al., 2008). Not only will this enable a verification of how

well the general ambiguity processing approach works with other formalisms, but it will

218

provide a common mathematical language with which to discuss a variety of grammar

and transducer formalisms.

Annotation. Another area of research enabled by the work in Chapter 4 on learning

from ambiguous labels concerns better strategies for annotation for the purposes of su-

pervised learning. Annotation is typically carried out by developing a style guide that

is used to train annotators how to label example inputs. In addition to being a training

manual, style guides have traditionally been important because they have been used to

create consistency when there would otherwise be ambiguity about the ‘correct’ anno-

tation of some example. Recent work has begun to demonstrate that many redundant

non-expert annotators can perform as well as a few highly trained annotators on many

annotation tasks, but at lower costs (Snow et al., 2008). However, this previous work

still tends to focus on a head-to-head comparison on annotation tasks where there is a

single correct label—that is, where a style guide exists and can be used to determine what

the ideal annotation is. The multi-label paradigm, where the model discriminates bad

labels from good labels, but where there may be many good labels, suggests a different

annotation paradigm based on annotator intuitions rather than style guide adherence. For

example, rather than instructing an annotator to label the segmentation of a Chinese sen-

tence (which, as I discussed in Chapter 4, is an inherently ambiguous problem) according

to a highly detailed style guide, the annotator might be instructed to label all possible

segmentations he believes are reasonable based on a higher level characterization of the

task. The goal of the annotation task is thus to capture the intuitions of human anno-

tators about a particular phenomenon, which may vary between annotators, and—quite

219

importantly—where multiple annotations may exist for each instance to be labeled. This

has the potential to simplify the complexity of developing style guides (which is expen-

sive itself, and larger style guides makes it more difficult to train annotators); although it

may come at the expensive of making it more difficult to detect poor annotators who are

either deliberately or inadvertently not carrying out the annotation task.

Propagating ambiguity further with ‘fuzzy’ human interfaces. This dissertation has

provided evidence that deferring the resolution of ambiguity in machine translation im-

proves translation quality. However, at the end of the process, the evaluation methodology

that was used, adhering to the standards of the field, requires that a single translation be

selected as the output of a process. Furthermore, this is the standard interface used by

translation systems: the user provides an input document and receives a translated output

document. However, it is reasonable to assume the effectiveness of the interface between

a translation system and a human consumer of translation output will also benefit from the

propagation of ambiguity. That is, the translation interface should communicate ambigu-

ity about the translations to the user. For example, when reading translation output, one

may encounter a sentence that it is uninterpretable. Current translation interfaces offer

very little opportunity for a consumer of MT output to deal with the failure of a system,

other than going back to the source language. Being able to explore other translation

hypotheses beyond the 1-best hypothesis under the model is likely to be one of the most

helpful things one can do. Furthermore, a number of human evaluation methodologies

that have been developed, such as having monolingual English speakers take reading com-

prehension tests based on MT output (Jones et al., 2005), could be easily adapted to deal

220

with new ambiguity-preserving interface paradigms. This proposed work is in the spirit

of the proposals by Church and Hovy (1993), who argued that machine translation—even

at 1993 levels—already held value for end-users, but that the technology needed to be ex-

ploited differently than a translation agency would be. Viewed in these terms, the value of

the technology today is certainly much higher and holds much greater possibilities. The

success of the work of Albrecht et al. (2009), Koehn (2010), and the work presented at the

NIST 2005 Machine Translation Evaluation by Callison-Burch,1 who used sophisticated

interfaces to help users improve translation output and assist in the translation process,

indicates that fuzzy interface designed for the acquisition of information from foreign

language sources holds considerable potential.

1http://www.itl.nist.gov/iad/mig/tests/mt/2005/doc/mt05eval official results release 20050801 v3.html

221

Bibliography
Anne Abeillé, Yves Schabes, and Aravind K. Joshi. Using lexicalized tags for machine

translation. In Proceedings of the 13th Conference on Computational Linguistics (COL-
ING), volume 3, pages 1–6, 1990.

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling,
Volume 1: Parsing. Prentice-Hall, Englewood Cliffs, NJ, 1972.

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Compiling,
Volume 2: Compiling. Prentice-Hall, Englewood Cliffs, NJ, 1973.

Joshua Albrecht, Rebecca Hwa, and G. Elisabeta Marai. The Chinese room: Visualization
and interaction to understand and correct ambiguous machine translation. Computer
Graphics Forum, 28(3), 2009.

Cyril Allauzen and Mehryar Mohri. N-way composition of weighted finite-state trans-
ducers. International Journal of Foundations of Computer Science, 20(4):613–627,
2009.

Cyril Allauzen, Mehryar Mohri, and Brian Roark. Generalized algorithms for construct-
ing statistical language models. In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics, pages 40–47, 2003.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar Mohri.
OpenFst: A general and efficient weighted finite-state transducer library. In Proceed-
ings of the Ninth International Conference on Implementation and Application of Au-
tomata, (CIAA 2007), volume 4783 of Lecture Notes in Computer Science, pages 11–
23. Springer, 2007. http://www.openfst.org.

James F. Allen. Natural Language Understanding. Benjamin Cummings, 1987.

Galen Andrew. A hybrid Markov/semi-Markov conditional random field for sequence
segmentation. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2006), pages 465–472, Sydney, 2006.

Yehoshua Bar-Hillel, Micah Perles, and Eliyahu Shamir. On formal properties of simple
phrase structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommu-
nikationsforschung, 14:143–172, 1961.

K. Beesley and L. Karttunen. Finite State Morphology. CLSI Publications, 2003.

James O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

Nicola Bertoldi, Richard Zens, and Marcello Federico. Speech translation by confusion
network decoding. In Proceeding of ICASSP 2007, Honolulu, Hawaii, April 2007.

Rajendra Bhatia. Matrix Analysis. Springer, 1996.

222

Alexandra Birch, Phil Blunsom, and Miles Osborne. A Quantitative Analysis of Reorder-
ing Phenomena. In Proceedings of the Fourth Workshop on Statistical Machine Trans-
lation, pages 197–205, Athens, Greece, March 2009. Association for Computational
Linguistics.

Phil Blunsom, Trevor Cohn, and Miles Osborne. A discriminative latent variable model
for statistical machine translation. In Proceedings of ACL-HLT, 2008a.

Phil Blunsom, Trevor Cohn, and Miles Osborne. Probalistic inference for machine trans-
lation. In EMNLP, 2008b.

Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles Osborne. A Gibbs sampler for phrasal
synchronous grammar induction. In Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), pages 782–790, Singapore, 2009.

Léon Bottou. Online Algorithms and Stochastic Approximations. Cambridge University
Press, Cambridge, UK, 1998.

Pierre Boullier. Range concatenation grammars. In Proceedings of the Sixth International
Workshop on Parsing Technologies, pages 53–54, Trento, Italy, February 2000.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer.
The mathematics of statistical machine translation: parameter estimation. Computa-
tional Linguistics, 19(2):263–311, 1993.

Razvan C. Bunescu. Learning with probabilistic features for improved pipeline models. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 670–679, 2008.

Chris Callison-Burch, Philipp Koehn, Christof Monz, and Josh Schroeder. Findings of
the 2009 workshop on statistical machine translation. In Proceedings of Workshop on
Statistical Machine Translation (WMT09), 2009.

Xavier Carreras and Michael Collins. Non-projective parsing for statistical machine trans-
lation. In EMNLP ’09: Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing, pages 200–209, 2009.

Pi-Chuan Chang, Michel Galley, and Christopher D. Manning. Optimizing Chinese word
segmentation for machine translation performance. In Proceedings of the Third Work-
shop on Statistical Machine Translation, 2008.

Pi-Chuan Chang, Dan Jurafsky, and Christopher D. Manning. Disambiguating “DE”
for Chinese-English machine translation,. In Proceedings of the EACL 2009 Fourth
Workshop on Statistical Machine Translation, 2009.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. In Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics, pages 310–318, 1996.

223

J. Cheppalier, M. Rajman, R. Aragues, and A. Rozenknop. Lattice parsing for speech
recognition. In Sixth Conference sur le Traitement Automatique du Langage Naturel
(TANL’99), pages 95–104, 1999.

David Chiang. Hierarchical phrase-based translation. Computational Linguistics, 33(2):
201–228, 2007.

Tagyoung Chung and Daniel Gildea. Unsupervised tokenization for machine translation.
In Conference on Empirical Methods in Natural Language Processing (EMNLP-09),
Singapore, 2009.

Kenneth W. Church and Eduard H. Hovy. Good applications for crummy machine trans-
lation. Machine Translation, 8:239–258, 1993.

Stephen Clark and James R. Curran. Parsing the WSJ using CCG and log-linear mod-
els. In Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL-04), pages 104–111, Barcelona, 2004.

Shay B. Cohen and Noah A. Smith. Shared logistic normal distributions for soft param-
eter tying in unsupervised grammar induction. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the As-
sociation for Computational Linguistics, 2009.

Shay B. Cohen, David M. Blei, and Noah A. Smith. Variational inference for adapter
grammars. In Proceedings of NAACL, 2010.

Michael Collins. A new statistical parser based on bigram lexical dependencies. In Pro-
ceedings of the 34th annual meeting on Association for Computational Linguistics,
pages 184–191, 1996.

Michael Collins, Philipp Koehn, and Ivona Kucerova. Clause restructuring for statistical
machine translation. In Proceedings of ACL 2005, 2005.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, pages 558–565. The MIT Press and McGraw-Hill Book Company,
1989.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications and Signal Processing. Wiley-Interscience, 2006.

A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates
using the EM algorithm. Applied Statistics, 28(1):20–28, 1979.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computa-
tional Geometry: Algorithms and Applications. Springer, second edition, 2000.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), 39(1):1–38, 1977.

224

Steve DeNeefe and Kevin Knight. Synchronous tree adjoining machine translation. In
EMNLP ’09: Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 727–736, 2009.

John DeNero, Alex Bouchard-Côté, and Dan Klein. Sampling alignment structure under
a Bayesian translation model. In Proceedings of EMNLP, 2008.

Steven J. DeRose. Grammatical category disambiguation by statistical optimization.
Computational Linguistics, 14:31–39, 1988.

Mona Diab, Mahmoud Ghoneim, and Nizar Habash. Arabic diacritization in the context
of statistical machine translation. In Proceedings of the Machine Translation Summit
(MT-Summit), 2007.

Bonnie J. Dorr. Interlingual machine translation: A parameterized approach. Artificial
Intelligence, 63(1):429–492, 1993.

Mark Dredze, Partha Pratim Talukdar, and Koby Crammer. Sequence learning from data
with multiple labels. In Proceedings of the 1st International Workshop on learning
from Multi-Label Data (MLD09), 2009.

Manfred Droste and Werner Kuich. Semirings and formal power series. In Manfred
Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted Automata,
Monographs in Theoretical Computer Science, pages 3–27. Springer, 2009.

Chris Dyer. Noisier channel translation: translation from morphologically complex lan-
guages. In Proceedings of the Second Workshop on Statistical Machine Translation,
Prague, June 2007.

Chris Dyer. Using a maximum entropy model to build segmentation lattices for MT.
In Proceedings of the North American Chapter of the Association for Computational
Linguistics - Human Language Technologies (NAACL HLT) 2009, 2009.

Chris Dyer. Two monolingual parses are better than one (synchronous parse). In Pro-
ceedings of NAACL, 2010.

Chris Dyer and Philip Resnik. Context-free reordering, finite-state translation. In Pro-
ceedings of NAACL, 2010.

Chris Dyer, Smaranda Muresan, and Philip Resnik. Generalizing word lattice translation.
In Proceedings of ACL-08: HLT, pages 1012–1020, Columbus, Ohio, June 2008.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Johnathan Weese, Ferhan Ture, Phil Blun-
som, Hendra Setiawan, Vladimir Eidelman, and Philip Resnik. cdec: A decoder,
alignment, and learning framework for finite-state and context-free translation models.
In Proceedings of ACL (Demo session), Uppsala, Sweden, 2010.

John Earley. An efficient context-free parsing algorithm. Communications of the Associ-
ation for Computing Machinery, 13(2):94–102, 1970.

225

Jason Eisner. Directional constraint evaluation in Optimality Theory. In Proceedings
of the 18th International Conference on Computational Linguistics (COLING 2000),
pages 257–263, Saarbrücken, Germany, August 2000.

Jason Eisner, Eric Goldlust, and Noah A. Smith. Compiling comp ling: Weighted dy-
namic programming and the Dyna language. In Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT-EMNLP), pages 281–290, Vancouver, October 2005.

Jenny Rose Finkel, Christopher D. Manning, and Andrew Y. Ng. Solving the problem of
cascading errors: Approximate Bayesian inference for linguistic annotation pipelines.
In Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing, 2006.

Radu Florian, Hany Hassan, Abe Ittycheriah, Hongyan Jing, Nanda Kambhatla, Xiao-
qiang Luo, Nicolas Nicolov, and Salim Roukos. A statistical model for multilingual
entity detection and tracking. In Proceedings of HLT-NAACL 2004, pages 1–8, 2004.

Jerry A. Fodor. Modularity of Mind: An Essay on Faculty Psychology. MIT Press,
Cambridge, 1983.

Michel Galley and Christopher D. Manning. Accurate non-hierarchical phrase-based
translation. In Proceedings of NAACL, 2010.

Giorgio Gallo, Giustino Longo, and Stefano Pallottino. Directed hypergraphs and appli-
cations. Discrete Applied Mathematics, 42(2):177–201, 1993.

Kuzman Ganchev, Jo ao Graça, Jennifer Gillenwater, and Ben Taskar. Posterior regular-
ization for structured latent variable models. Technical Report MS-CIS-09-16, Univer-
sity of Pennsylvania Department of Computer and Information Science, January 2009.

Sharon Goldwater. Nonparametric Bayesian Models of Lexical Acquisition. PhD thesis,
Brown University, 2006.

Sharon Goldwater and David McClosky. Improving statistical MT through morphological
analysis. In Proceedings of HLT-EMNLP 2005, pages 676–683, Vancouver, British
Columbia, 2005.

Yihong Gong and Wei Xu. Maximum entropy model and conditional random field. In
Borko Furht, editor, Machine Learning for Multimedia Content Analysis, chapter 9.
Springer, 2007.

Joshua Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, 1999.

Jonathan Graehl, Kevin Knight, and Jonathan May. Training tree transducers. Computa-
tional Linguistics, 34(3):391–427, 2008.

D. Graff, J. Kong, K. Chen, and K. Maeda. English gigaword third edition, 2007.

226

Susan L. Graham, Walter L. Ruzzo, and Michael Harrison. An improved context-free
recognizer. ACM Trans. Program. Lang. Syst., 2(3):415–462, 1980.

Thomas L. Griffiths, Charles Kemp, and Joshua B. Tenenbaum. Bayesian models of
cognition. In Ron Sun, editor, The Cambridge handbook of computational cognitive
modeling. Cambridge University Press, 2008.

Dick Grune and Ceriel J. H. Jacobs. Parsing as intersection. In David Gries and Fred B.
Schneider, editors, Parsing Techniques, pages 425–442. Springer, New York, 2008.

Nizar Habash and Fatiha Sadat. Arabic preprocessing schemes for statistical machine
translation. In Proceedings of NAACL, pages 49–52, New York, 2006.

Nizar Habash, Ryan Gabbard, Owen Rambow, Seth Kulick, and Mitch Marcus. De-
termining case in arabic: Learning complex linguistic behavior requires complex lin-
guistic features. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), Prague, Czech Republic, 2007.

Aria Haghighi, John Blitzer, John DeNero, and Dan Klein. Better word alignments with
supervised ITG models. In Proceedings of ACL/IJCNLP, pages 923–931, 2009.

Jan Hajič and Barbora Hladká. Tagging inflective languages: Prediction of morphological
categories for a rich, structured tagset. In Proceedings of the COLING-ACL 1998, pages
483–490, 1998.

William P. Headden III, Mark Johnson, and David McClosky. Improving unsupervised
dependency parsing with richer contexts and smoothing. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pages 101–109, 2009.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

Liang Huang. Forest-based Algorithms in Natural Language Processing. PhD thesis,
University of Pennsylvania, 2008.

Liang Huang and David Chiang. Better k-best parsing. In In Proceedings of the 9th
International Workshop on Parsing Technologies, pages 53–64, 2005.

Liang Huang and David Chiang. Forest rescoring: Faster decoding with integrated lan-
guage models. In ACL, 2007.

Liang Huang and Haitao Mi. Efficient incremental decoding for tree-to-string translation.
In In Proc. EMNLP, 2010.

Liang Huang, Hao Zhang, Dan Gildea, and Kevin Knight. Binarization of synchronous
context-free grammars. Computational Linguistics, 35(4), 2009.

227

Gonzalo Iglesias, Adrià de Gispert, Eduardo R. Banga, and William Byrne. Hierarchi-
cal phrase-based translation with weighted finite state transducers. In Proceedings of
NAACL, pages 433–441, 2009.

Edwin T. Jaynes and G. Larry Bretthorst. Probability theory: the logic of science. Cam-
bridge University Press, 2003.

Frederick Jelinek. Statistical Methods for Speech Recognition (Language, Speech, and
Communication). The MIT Press, January 1998.

Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Advances in Neural
Information Processing Systems 15 (NIPS), 2002.

Douglas Jones, Wade Shen, Neil Granoien, Martha Herzog, and Clifford Weinstein. Mea-
suring translation quality by testing English speakers with a new Defense Language
Proficiency Test for Arabic. In Proceedings of the 2005 International Conference on
Intelligence Analysis, McLean, Virginia, 2005.

Michael I. Jordan. Dirichlet processes, Chinese restaurant processes and all that. Tutorial
presentation at the NIPS Conference, Vancouver, 2005.

Dan Klein and Christopher D. Manning. Parsing with hypergraphs. In Proceedings of
IWPT 2001, 2001.

Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic structure:
Models of dependency and constituency. In ACL ’04: Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics, pages 478–485, 2004.

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language model-
ing. In Proceedings of IEEE Internation Conference on Acoustics, Speech, and Signal
Processing, pages 181–184, 1995.

Philipp Koehn. Statistical Machine Translation. Cambridge University Press, 2009.

Philipp Koehn. Enabling monolingual translators: Post-editing vs. options. In Proceed-
ings of NAACL, 2010.

Philipp Koehn. Pharaoh: A beam search decoder for phrase-based statistical machine
translation models, 2004.

Philipp Koehn and Kevin Knight. Empirical methods for compound splitting. In Pro-
ceedings of the EACL 2003, pages 187–193, Budapest, 2003.

Philipp Koehn, Franz J. Och, and Daniel Marcu. Statistical phrase-based translation. In
Proceedings of NAACL, pages 48–54, 2003.

Philipp Koehn, Abhishek Arun, and Hieu Hoang. Towards better machine translation
quality for the German-English language pairs. In ACL Workshop on Statistical Ma-
chine Translation, 2008.

228

Terry Koo and Michael Collins. Hidden-variable models for discriminative reranking.
In Proceedings of the 2005 Conference on Empirical Methods in Natural Language
Processing, pages 507–514, 2005.

Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Springer, 1985.

Shankar Kumar and William Byrne. Minimum Bayes-risk decoding for statistical ma-
chine translation. In Processings of HLT-NAACL, 2004.

Shankar Kumar, Yongang Deng, and William Byrne. A weighted finite state transducer
translation template model for statistical machine translation. Journal of Natural Lan-
guage Engineering, 12(1):35–75, 2006.

Shankar Kumar, Wolfgang Macherey, Chris Dyer, and Franz Och. Efficient minimum
error rate training and minimum bayes-risk decoding for translation hypergraphs and
lattices. In Proceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Language Processing of
the AFNLP, pages 163–171, 2009.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of the
18th International Conference on Machine Learning, pages 282–289, San Francisco,
2001.

Lillian Lee. Fast context-free grammar parsing requires fast Boolean matrix multiplica-
tion. Journal of the ACM, 49(1):1–15, 2002.

Young-Suk Lee, Kishore Papineni, Salim Roukos, Ossama Emam, and Hany Hassan.
Language model based Arabic word segmentation. In ACL ’03: Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics, pages 399–406,
2003.

Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Computation.
Prentice Hall, 1981.

P. M. Lewis, II and R. E. Stearns. Syntax-directed transduction. Journal of the ACM, 15
(3):465–488, 1968.

Zhifei Li. Novel Inference, Training, and Decoding Methods over Translation Forests.
PhD thesis, The Johns Hopkins University, 2010.

Zhifei Li and Jason Eisner. First- and second-order expectation semirings with applica-
tions to minimum-risk training on translation forests. In Proc. EMNLP, 2009.

Zhifei Li and Sanjeev Khudanpur. A scalable decoder for parsing-based machine transla-
tion with equivalent language model state maintenance. In Proceedings of ACL SSST
Workshop, 2008.

229

Zhifei Li and Sanjeev Khudanpur. Efficient extraction of oracle-best translations from
hypergraphs. In Proc. NAACL, 2009.

Zhifei Li, Chris Callison-Burch, Chris Dyer, Juri Ganitkevitch, Sanjeev Khudanpur, Lane
Schwartz, Wren N. G. Thornton, Jonathan Weese, and Omar F. Zaidan. Joshua: an
open source toolkit for parsing-based machine translation. In StatMT ’09: Proceedings
of the Fourth Workshop on Statistical Machine Translation, pages 135–139, Athens,
Greece, 2009a.

Zhifei Li, Jason Eisner, and Sanjeev Khudanpur. Variational decoding for statistical ma-
chine translation. In ACL-IJCNLP ’09: Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2, pages 593–601, 2009b.

Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming B, 45(3):503–528, 1989.

Adam Lopez. Statistical machine translation. ACM Computing Surveys, 40(3):1–49,
2008a.

Adam Lopez. Translation as weighted deduction. In EACL ’09: Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Linguistics,
pages 532–540, 2009.

Adam Lopez. Machine Translation by Pattern Matching. PhD thesis, University of Mary-
land, March 2008b.

Yanjun Ma, Nicolas Stroppa, and Andy Way. Bootstrapping word alignment via word
packing. In Proceedings of the 45th Annual Meeting of the Association of Computa-
tional Linguistics, pages 304–311, Prague, Czech Republic, June 2007.

Wolfgang Macherey, Franz Josef Och, Ignacio Thayer, and Jakob Uszkoreit. Lattice-
based minimum error rate training for statistical machine translation. In EMNLP ’08:
Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 725–734, 2008.

Nitin Madnani. The Circle of Meaning: From Translation to Paraphrasing and Back.
PhD thesis, University of Maryland, May 2010.

Nitin Madnani and Bonnie Dorr. Generating phrasal & sentential paraphrases: A survey
of data-driven methods. Computational Linguistics, 36(3), 2010.

Lidia Mangu, Eric Brill, and Andreas Stolcke. Finding consensus in speech recognition:
Word error minimization and other applications of confusion networks. Speech and
Language, 14(4):373–400, 2000.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Lan-
guage Processing. The MIT Press, Boston, MA, 1999.

230

Lambert Mathias and William Byrne. Statistical phrase-based speech translation. In IEEE
Conference on Acoustics, Speech and Signal Processing, 2006.

I. Dan Melamed. Statistical machine translation by parsing. In ACL, pages 653–660,
2004.

Igor′ Mel′čuk. Dependency Syntax: Theory and Practice. State University of New York
Press, Albany, NY, 1988.

Mehryar Mohri. Weighted automata algorithms. In Manfred Droste, Werner Kuich, and
Heiko Vogler, editors, Handbook of Weighted Automata, Monographs in Theoretical
Computer Science, pages 213–254. Springer, 2009.

Mark-Jan Nederhof. Weighted deductive parsing and Knuth’s algorithm. Computational
Linguistics, 29(1):135–143, Mar 2003.

Mark-Jan Nederhof and Giorgio Satta. Probabilistic parsing as intersection. In 8th In-
ternational Workshop on Parsing Technologies, pages 137–148, Nancy, France, April
2003.

Mark-Jan Nederhof and Giorgio Satta. The language intersection problem for non-
recursive context-free grammars. Information and Computation, 192:172–184, 2004.

Sonja Niessen and Hermann Ney. Morpho-syntactic analysis for reordering in statistical
machine translation. In Proceedings of MT Summit VIII, Santiago de Compostela,
Galicia, Spain, 2001.

Franz Och. Minimum error rate training in statistical machine translation. In Proceedings
of the 41st Annual Meeting of the Association for Computational Linguistics (ACL),
pages 160–167, Sapporo, Japan, July 2003.

Franz Och and Hermann Ney. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51, 2003.

Kemal Oflazer and Ilknur Durgar El-Kahlout. Exploring different representational units
in English-to-Turkish statistical machine translation. In Proceedings of the Second
Workshop on Statistical Machine Translation, pages 25–32, Prague, Czech Republic,
June 2007.

Takashi Onishi, Masao Utiyama, and Eiichiro Sumita. Paraphrase lattice for statisti-
cal machine translation. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), to appear 2010.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting
of the ACL, pages 311–318, 2002.

Barbara H. Partee, Alice G.B. ter Meulen, and Robert E. Wall. Mathematical Methods in
Linguistics. Springer, 1990.

231

Fernando C. N. Pereira and Rebecca N. Wright. Finite-state approximation of phrase
structure grammars. In Proceedings of the 29th annual meeting on Association for
Computational Linguistics, pages 246–255, Berkeley, 1991.

Slav Petrov and Dan Klein. Discriminative log-linear grammars with latent variables. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20 (NIPS), pages 1153–1160, Cambridge, MA, 2008. MIT Press.

Matt Post and Daniel Gildea. Parsers as language models for statistical machine transla-
tion. In Proceedings of AMTA, Honolulu, HI, 2008.

Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random fields for ob-
ject recognition. In Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors, Advances
in Neural Information Processing Systems 17, pages 1097–1104, 2004.

Lance Ramshaw, Elizabeth Boschee, Sergey Bratus, Scott Miller, Rebecca Stone, Ralph
Weischedel, and Alex Zamanian. Experiments in multi-modal automatic content ex-
traction. In HLT ’01: Proceedings of the first international conference on Human
language technology research, pages 1–5, 2001.

Philip Resnik, Olivia Buzek, Chang Hu, Yakov Kronrod, Alex Quinn, and Benjamin B.
Bederson. Improving translation via targeted paraphrasing. In Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing, EMNLP ’10,
pages 127–137, 2010.

Alexander M. Rush, David Sontag, Michael Collins, and Tommi Jaakkola. On dual de-
composition and linear programming relaxations for natural language processing. In In
Proc. EMNLP, 2010.

Sunita Sarawagi and William W. Cohen. Semi-Markov conditional random fields for
information extraction. In Advances in Neural Information Processing Systems 17
(NIPS), pages 1185–1192, 2004.

Giorgio Satta. Translation algorithms by means of language intersection, submitted.

Giorgio Satta and Enoch Peserico. Some computational complexity results for syn-
chronous context-free grammars. In Proceedings of NAACL, 2005.

Hendra Setiawan, Min-Yen Kan, Haizhou Li, and Philip Resnik. Topological ordering
of function words in hierarchical phrase-based translation. In ACL-IJCNLP ’09: Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP: Vol-
ume 1, pages 324–332, 2009.

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Pro-
ceedings of HLT-NAACL, pages 213–220, 2003.

Stuart Shieber, Yves Schabes, and Fernando C. N. Pereira. Priniples and implementation
of deductive parsing. Journal of Logic Programming, 24:3–36, 1995.

232

Achim Sixtus and Stefan Ortmanns. High quality word graphs using forward-backward
pruning. In Proceedings of ICASSP, pages 593–596, Phoenix, AZ, 1999.

Noah Smith. Log-linear models. http://www.cs.cmu.edu/˜nasmith/
papers/smith.tut04.pdf, 2004.

Padhraic Smyth, Usama Fayyad, Michael Burl, Pietro Perona, and Pierre Baldi. Inferring
ground truth from subjective labelling of Venus images. In Gerald Tesauro, David S.
Touretzky, and Todd K. Leen, editors, Advances in Neural Information Processing Sys-
tems 7 (NIPS), pages 1085–1092, Denver, CO, 1994. MIT Press.

Matthew Snover, Bonnie J. Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul.
A study of translation edit rate with targeted human annotation. In Proceedings of
Association for Machine Translation in the Americas, 2006.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. Cheap and fast–but
is it good? Evaluating non-expert annotations for natural language tasks. In Proceed-
ings of EMNLP, pages 254–263, 2008.

Hagen Soltau, George Saon, Daniel Povy, Lidia Mangu, Brian Kingsbury, Jeff Kuo, Mo-
hamed Omar, and Geoffrey Zweig. The IBM 2006 GALE Arabic ASR system. In
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2007), 2007.

Richard Sproat and Thomas Emerson. The first international Chinese word segmenta-
tion bakeoff. In Proceedings of the second SIGHAN workshop on Chinese language
processing, pages 133–143, 2003.

Mark Steedman. The Syntactic Process. MIT Press, Cambridge, MA, USA, 2000.

Andreas Stolcke. SRILM – an extensible language modeling toolkit. In Intl. Conf. on
Spoken Language Processing, 2002.

Xu Sun, Yaozhong Zhang, Takuya Matsuzaki, Yoshimasa Tsuruoka, and Jun’ichi Tsujii.
A discriminative latent variable chinese segmenter with hybrid word/character informa-
tion. In Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages
56–64, Boulder, Colorado, June 2009.

Charles Sutton, Andrew McCallum, and Khashayar Rohanimanesh. Dynamic conditional
random fields: Factorized probabilistic models for labeling and segmenting sequence
data. Journal of Machine Learning Research, 8:693–723, 2007.

Toshiyuku Takezawa, Eiichiro Sumita, Fumiaki Sugaya, Hirofumi Yamamoto, and Seiichi
Yamamoto. Toward a broad-coverage bilingual corpus for speech translation of travel
conversations in the real world. In Proceedings of LREC 2002, pages 147–152, Las
Palmas, Spain, 2002.

233

David Talbot and Miles Osborne. Modelling lexical redundancy for machine translation.
In Proceedings of ACL 2006, Sydney, Australia, 2006.

Roy Tromble and Jason Eisner. Learning linear ordering problems for better translation.
In EMNLP ’09: Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 1007–1016, 2009.

Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice minimum
Bayes-risk decoding for statistical machine translation. In EMNLP ’08: Proceedings
of the Conference on Empirical Methods in Natural Language Processing, pages 620–
629, 2008.

Huihsin Tseng, Pi-Chuan Chang, Galen Andrew, Daniel Jurafsky, and Christopher Man-
ning. A conditional random field word segmenter. In Fourth SIGHAN Workshop on
Chinese Language Processing, 2005.

Grigorios Tsoumakas and Ioannis Katakis. Multi label classification: An overview. In-
ternational Journal of Data Warehousing and Mining, 3(3):1–13, 2007.

Nicola Ueffing, Franz J. Och, and Hermann Ney. Generation of word graphs in statistical
machine translation. In Proceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing, pages 156–163, 2002.

Gertjan van Noord. The intersection of finite state automata and definite clause grammars.
In Proceedings of ACL, 1995.

Ashish Venugopal, Andreas Zollmann, and Vogel Stephan. An efficient two-pass ap-
proach to synchronous-CFG driven statistical MT. In Human Language Technologies
2007: The Conference of the North American Chapter of the Association for Compu-
tational Linguistics; Proceedings of the Main Conference, pages 500–507, Rochester,
New York, 2007.

K. Vijay-Shanker and David J. Weir. The use of shared forests in tree adjoining grammar
parsing. In Sixth Conference of the European Chapter of the Association for Computa-
tional Linguistics, pages 384–393, Utrecht, The Netherlands, April 1993.

Luis von Ahn. Games with a purpose. IEEE Computer Magazine, pages 96–98, June
2006.

Chao Wang, Michael Collins, and Philipp Koehn. Chinese syntactic reordering for sta-
tistical machine translation. In Proceedings of the 2007 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 737–745, Prague, 2007.

Janyce M. Wiebe, Rebecca F. Bruce, and Thomas P. O’Hara. Development and use of a
gold-standard data set for subjectivity classifications. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics, pages 246–253, 1999.

234

Dekai Wu. Stochastic inversion transduction grammars and bilingual parsing of parallel
corpora. Computational Linguistics, 23(3):377–404, 1997.

Jia Xu, Richard Zens, and Hermann Ney. Do we need Chinese word segmentation for
statistical machine translation? In Proceedings of the Third SIGHAN Workshop on
Chinese Language Learning, pages 122–128, Barcelona, Spain, 2004.

Peng Xu, Jaeho Kang, Michael Ringgaard, and Franz Och. Using a dependency parser to
improve SMT for subject-object-verb languages. In Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 245–253, Boulder, CO, 2009.

Kenji Yamada and Kevin Knight. A syntax-based statistical translation model. In ACL
’01: Proceedings of the 39th Annual Meeting on Association for Computational Lin-
guistics, pages 523–530, 2001.

Mei Yang and Katrin Kirchhoff. Phrase-based backoff models for machine translation of
highly inflected languages. In Proceedings of the EACL 2006, pages 41–48, 2006.

Omar F. Zaidan and Chris Callison-Burch. Feasibility of human-in-the-loop minimum
error rate training. In EMNLP ’09: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages 52–61, 2009.

Richard Zens and Hermann Ney. Discriminative reordering models for statistical machine
translation. In Proceedings of the Workshop on Statistical Machine Translation, pages
55–63, 2006.

Hao Zhang, Chris Quirk, Robert C. Moore, and Daniel Gildea. Bayesian learning of
non-compositional phrases with synchronous parsing. In Proceedings of ACL, 2008.

Tiejun Zhao, Lu Yajuan, Yang Muyun, and Yu Hao. Increasing accuracy of Chinese
segmentation with strategy of multi-step processing. In Journal of Chinese Information
Processing (Chinese Version), volume 1, pages 13–18, 2001.

Andreas Zollmann and Ashish Venugopal. Syntax augmented machine translation via
chart parsing. In Proceedings of the Workshop on SMT, 2006.

Andreas Zollmann, Ashish Venugopal, Franz Och, and Jay Ponte. A systematic compari-
son of phrase-based, hierarchical and syntax-augmented statistical MT. In Proceedings
of 22nd International Conference on Computational Linguistics (Coling), Manchester,
U.K., 2008.

235

	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Outline of the dissertation
	Research contributions
	Formal foundations
	Machine learning
	Applications

	A formal model of ambiguity in language and language processing
	Formal preliminaries
	Semirings
	Weighted sets and relations
	Operations over weighted sets and relations
	Weighted sets as matrices
	A general model for ambiguity processing

	Tractable representations of weighted sets and relations
	Weighted finite-state automata and transducers
	Weighted context-free grammars and weighted synchronous CFGs
	Selecting a representation: finite-state or context-free?

	Algorithms for composition of a WFST and a WSCFG
	Intersection of a WFSA and a WCFG
	From intersection to composition
	A note on terminology: sets vs. relations
	Application: Synchronous parsing via weighted composition

	Inference
	Correspondences between WFSTs and WSCFGs
	Computing the total weight of all derivations
	Computing marginal edge weights

	Summary

	Finite-state representations of ambiguity
	An introduction to statistical machine translation
	Language models
	Translation models
	Model parameterization: linear models
	Minimum error rate training (mert)
	Translation evaluation

	Translation of WFST-structured input
	Sources of input finite-state ambiguity
	Properties of finite-state inputs
	Word lattice phrase-based translation
	Word lattice translation with WSCFGs

	Experiments with finite-state representations of uncertainty
	Spoken language translation
	Morphological variation
	Segmentation alternatives with word lattices

	Summary

	Learning from ambiguous labels
	Conditional random fields
	Training conditional random fields
	Example: two CRF segmentation models

	Training CRFs with multiple references
	Word segmentation and compound word segmentation
	Compound segmentation for MT
	Reference segmentation lattices for MT

	Experimental evaluation
	Segmentation model and features
	Training data
	Max-marginal pruning
	Intrinsic segmentation evaluation
	Translation experiments

	Related work
	Future work
	Summary

	Context-free representations of ambiguity
	Reordering forests
	Reordering forests based on source parses
	What about finite-state equivalents?

	Modeling
	A probabilistic translation model with a latent reordering variable
	Conditional training

	Experiments
	Reordering and translation features
	Qualitative assessment of reordering model
	Translation experiments
	Model complexity

	Related work
	Future work
	Summary

	Conclusion
	Future work

	Bibliography

